Fractal Design Aspect 12 RGB PWM in detail
An old-school rotor with one small aerodynamic tweak, the shortcomings of the Dynamic series of fans removed, and the addition of ARGB LED lighting. There are negatives too, but with the right application you can neatly avoid them. Overall, though, Fractal Design’s Aspects are functionally among the most feature-rich of what’s available in the current lineup of LED fans.
Fractal Design Aspect fans are priced between the FD Dynamic X2 and the FD Prisma. The variants without LEDs are closer to the Dynamic X2 and the illuminated ones to the Prisma fans. We will now test the ones with LEDs, which according to the price should represent a kind of “golden middle way”. A comparison with the Gelid Zodiac (also an ARGB LED fan) will be interesting. The latter is cheaper, but the low price has resulted in a rather serious shortcoming that you won’t find on Fractal Design’s Aspects.
The shape of the rotor could be described as traditional. At its base, it has the shape that has been the template for the vast majority of fans until recently – seven axial blades with a fairly wide side near the frame. But without the more pronounced curvature of the leading edge.
This type of design will disappear from the market over time and will be avoided by designers who rightly seek to achieve the highest possible efficiency. The reason is that PC fan manufacturers have already figured out that the pronounced curvature of the leading edges works more effectively with the air – aerodynamically maximizing movement in the axial direction.
In contrast, the geometry of the Aspects also pushes hard on the other two axes, resulting in higher friction on the frame. This means that this traditional design with a smaller blade curvature is now surpassed. Nevertheless, it is still attractive for, say, fans on the more inexpensive side. Even more so when the imperfections of the more common designs are suppressed. Fractal Design overcomes those with the Aspects with a detail that is supposed to improve aerodynamics.
Note that the leading edge starts at a smaller thickness than the blade continues at after two millimetres. There is a sort of step here to eliminate unwanted microturbulence at the intake that reduces airflow. This is no marketing ploy, and the beneficial effects of this feature can be seen in the improved performance compared to fans that have a similar rotor shape except for this detail.
The blades can be said to have average rigidity. Because of the smaller thickness (1.6 mm in critical places) and higher elasticity, some unwanted deformation will occur, but less than with fan blades made of clear material, which is usually even softer. It’s also good to point out that although the Aspects are illuminated fans, the rotor is not made of transparent, but of “white” plastic.
The frame is quite simple, with no tapered intake and exhaust, simply a cylinder with perpendicular edges. The corners are without anti-vibration pads, on the basis of which it can be assumed that some negligible mechanical vibrations will be transmitted to the frame. It is, though, among the better ones in this respect.
What’s also notable is that unlike the Dynamic fans, the Aspects no longer have cutouts on the trailing edge, near the motor housing. These were also intended to reduce parasitic turbulence. Apparently they were not that effective. We will try to find out the exact reason why Fractal Design dropped them from the Aspects rotor design (and before that from the older Prisma fans) and if we can, we will add this information to the text.
The cable is long (50 cm) and flat. Without braiding, but the individual wires hold together nicely through their insulation. There are up to four connectors on the ends. The power connector of both the motor and the ARGB LED has a second connector next to it for the eventual connection of another fan in series.
Brand and model of fan | Paper specicifations * | Price [EUR] | ||||||||
Format (and thickness) in mm | Connecting | Speed [rpm] | Airflow [m3/h] | Static pressure [mm H2O] | Noise level [dBA] | Bearings | MTBF [h] | |||
Motor | RGB LED | |||||||||
Fractal Design Aspect 12 RGB PWM | 120 (25) | 4-pin (PWM) | 3-pin (5 V) | 500–2000 | 22.09–95.14 | 0.23–2.34 | 10.0–33.2 | rifle | 90 000 | 16 |
BeQuiet! Silent Wings 3 (BL066) | 120 (25) | 4-pin (PWM) | N/A | 1450 | 85.80 | 1.79 | 16.4 | fluid | 300 000 | 21 |
Gelid Zodiac | 120 (25) | 4-pin (PWM) | 3-pin (5 V) | 700–1600 | 111.29 | 1.47 | 35.0 | hydrodynamic | N/A | 10 |
Fractal Design Dynamic X2 GP-12 PWM | 120 (25) | 4-pin (PWM) | N/A | 500–2000 | 148.83 | 0.51–2.30 | 10.0–32.2 | rifle | 100 000 | 12 |
BeQuiet! Pure Wings 2 (BL039) | 120 (25) | 4-pin (PWM) | N/A | 1500 | 87.00 | 1.25 | 19.2 | rifle | 80 000 | 11 |
Gigabyte Aorus 120 ARGB | 120 (25) | 4-pin (PWM) | 3-pin (5 V) | 800–1700 | 31.47–69.40 | 0.37–1.48 | 7.3–28.6 | sleeve | 73 500 | 25 |
Arctic BioniX P120 A-RGB | 120 (30) | 4-pin (PWM) | 3-pin (5 V) | 400–2300 | 81.55 | 2.10 | 33.4 | fluid | N/A | 21 |
Akasa OTTO SF12 | 120 (25) | 4-pin (PWM) | N/A | 0–2000 | 164.84 | 3.59 | 7.1–31.7 | ball | 80 000 | 22 |
Cooler Master SickleFlow 120 ARGB | 120 (25) | 4-pin (PWM) | 3-pin (5 V) | 680–1800 | 105.34 | 2.50 | 8.0–27.0 | rifle | 160 000 | 15 |
Alphacool SL-15 PWM | 120 (15) | 4-pin (PWM) | N/A | 600–1800 | 71.40 | 1.20 | 32.0 | ball | 50 000 | 11 |
Arctic BioniX F120 | 120 (25) | 4-pin (PWM) | N/A | 200–1800 | 117.00 | 2.10 | 20.0 | fluid | N/A | 10 |
SilverStone SST-AP123 | 120 (25) | 3-pin (DC) | N/A | 1500 | 96.84 | 1.46 | 23.8 | fluid | 50 000 | 25 |
Noctua NF-P12 redux-1700 PWM | 120 (25) | 4-pin (PWM) | N/A | 400–1700 | 120.20 | 2.83 | 25.1 | SSO | 150 000 | 13 |
SilentiumPC Fluctus 120 PWM | 120 (25) | 4-pin (PWM) | N/A | 300–1800 | N/A | N/A | N/A | fluid | 100 000 | 12 |
MSI MEG Silent Gale P12 | 120 (25) | 4-pin (PWM) | N/A | 0–2000 | 95.48 | 2.21 | 22.7 | hydrodynamic | 50 000 | 31 |
Asus ROG Strix XF120 | 120 (25) | 4-pin (PWM) | N/A | 1800 | 106.19 | 3.07 | 22.5 | „MagLev“ | 400 000 | 23 |
Akasa Vegas X7 | 120 (25) | 4-pin (PWM) | 4-pin (12 V) | 1200 | 71.19 | N/A | 23.2 | fluid | 40 000 | 11 |
Reeven Coldwing 12 | 120 (25) | 4-pin (PWM) | N/A | 300–1500 | 37.54–112.64 | 0.17–1.65 | 6.5–30.4 | sleeve | 30 000 | 12 |
Reeven Kiran | 120 (25) | 4-pin (PWM) | shared | 400–1500 | 110.10 | 2.95 | 33.6 | fluid | 120 000 | 17 |
SilentiumPC Sigma Pro 120 PWM | 120 (25) | 4-pin (PWM) | N/A | 500–1600 | 79.00 | N/A | 15.0 | hydraulic | 50 000 | 7 |
SilentiumPC Sigma Pro Corona RGB 120 | 120 (25) | 4-pin (PWM) | 4-pin (12 V) | 1500 | 56.58 | N/A | N/A | hydraulic | 50 000 | 12 |
SilverStone SST-AP121 | 120 (25) | 3-pin (DC) | N/A | 1500 | 60.08 | 1.71 | 22.4 | fluid | 50 000 | 18 |
SilverStone SST-FQ121 | 120 (25) | 7-pin (PWM) | N/A | 1000–1800 | 114.68 | 0.54–1.82 | 16.4–24.0 | fluid | 150 000 | 20 |
Xigmatek XLF-F1256 | 120 (25) | 3-pin (DC) | N/A | 1500 | 103.64 | N/A | 20.0 | rifle | 50 000 | 16 |
* When reading performance values, a certain amount of tolerance must always be taken into account. For maximum speeds, ±10 % is usually quoted, minimum speeds can vary considerably more from piece to piece, sometimes manufacturers will overlap by as much as ±50 %. This must then also be adequately taken into account for air flow, static pressure and noise levels. If only one value is given in a table entry, this means that it always refers to the situation at maximum speed, which is achieved at 12 V or 100 % PWM intensity. The manufacturer does not disclose the lower limit of the performance specifications in its materials in that case. The price in the last column is always approximate.
- Contents
- Fractal Design Aspect 12 RGB PWM in detail
- The basis of the methodology, the wind tunnel
- Mounting and vibration measurement
- Initial warm-up and speed recording
- Base 7 equal noise levels…
- .. and sound color (frequency characteristic)
- Static pressure measurement…
- … and airflow
- Everything changes with obstacles
- How we measure power draw and motor power
- Measuring the intensity (and power draw) of lighting
- Results: Speed
- Results: Airlow w/o obstacles
- Results: Airflow through a nylon filter
- Results: Airflow through a plastic filter
- Results: Airflow through a hexagonal grille
- Results: Airflow through a thinner radiator
- Results: Airflow through a thicker radiator
- Results: Static pressure w/o obstacles
- Results: Static pressure through a nylon filter
- Results: Static pressure through a plastic filter
- Results: Static pressure through a hexagonal grille
- Results: Static pressure through a thinner radiator
- Results: Static pressure through a thicker radiator
- Results: Static pressure, efficiency by orientation
- Reality vs. specifications
- Results: Frequency response of sound w/o obstacles
- Results: Frequency response of sound with a dust filter
- Results: Frequency response of sound with a hexagonal grille
- Results: Frequency response of sound with a radiator
- Results: Vibration, in total (3D vector length)
- Results: Vibration, X-axis
- Results: Vibration, Y-axis
- Results: Vibration, Z-axis
- Results: Power draw (and motor power)
- Results: Cooling performance per watt, airflow
- Results: Cooling performance per watt, static pressure
- Airflow per euro
- Static pressure per euro
- Results: Lighting – LED luminance and power draw
- Results: LED to motor power draw ratio
- Evaluation