Site icon HWCooling.net

AMD Ryzen 7 5700X: A much more efficient CPU than the 5800X

Borderlands 3

At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

AMD Ryzen 7 5700X in detail

Almost a year and a half after the release of the first Ryzen 5000 (Vermeer) processors. AMD has added the Ryzen 7 5700X to this generation, among other models that will be covered in following tests. And really at the last minute. Slowly, not only the Ryzen 5000’s lifecycle is coming to an end, but also the AMD AM4 platform as a whole. As early as this year (probably in September), Zen 4/Ryzen 7000 (Raphael) processors will be released for the new AMD AM5 socket. The models with accelerated clock speeds with the XT designation will most likely no longer be coming.

But in the case of the 8-core Vermeers, the Ryzen 7 5800X is already very aggressively clocked and Although the power draw of up to 147 W (and more realistically even a bit lower when we take into account the efficiency of the motherboard power delivery) is not terrible, the cooling requirements are still quite high. However, the Ryzen 7 5700X is supposed to reduce them significantly. It has a lower TDP (65 instead of 105 W) and PPT limit (76 instead of 142 W). While the computing part is still concentrated in a single chiplet, AMD hasn’t pushed the 5700X so hard and the clock speeds are significantly lower. In terms of base frequencies by 400 MHz.

While the Ryzen 7 5700X is supposed to run at 3.4 GHz at TDP (65 W), the Ryzen 7 5800X is at 3.8 GHz. But the difference in all-core boost frequencies is even more substantial – 500 MHz. That’s why you won’t push the R7 5800X with unlimited PPT limits below 80°C under load, even with the most powerful tower coolers. The Ryzen 7 5700X is slower, but it can be run at lower noise levels even with cheaper coolers. Looking back a generation, the Ryzen 7 3800X was also more power-hungry compared to the Ryzen 7 3700X (the predecessor of the R7 5700X). But the latter didn’t push it to the PPT limit.

The Ryzen 7 5700X has a slower single-core boost as well, but officially only by 100 MHz, unofficially by 200 MHz. There’s no point in bumping it down significantly, and AMD certainly didn’t want to bring it below the Ryzen 5 5600X. A single core load can be handled below 70°C by an average cooler (or better, but very quiet) even at higher frequencies. In the case of the R7 5700X (and R7 5600X), it’s 4.6–4.65 GHz. Additionally, single-threaded workloads don’t run on a single core, but over time (workload duration) the available cores are shifted around differently.

If the Ryzen 7 5700X had come out in the first wave along with the more powerful Vermeer processors, it would probably have been significantly cheaper than the Ryzen 7 5800X. The end price of the R7 5700X is indeed lower, but only in the order of single digits or at most tens of euros. This is because the Ryzen 7 5800X recently went down from the launch recommended price of $449 to $299, which is also what the Ryzen 7 5700X is supposed to sell for. So the price/performance ratio will not always be better, as is usually the case with lower classes. The attractive thing, and the thing why AMD isn’t worried about equal pricing and cannibalizing sales of these processors, is that fundamental difference in power draw.

ManufacturerAMDAMDAMD
LineRyzen 7Ryzen 7Ryzen 7
SKU5700X5800X3700X
CodenameVermeerVermeerMatisse
CPU microarchitectureZen 3Zen 3Zen 2
Manufacturing node7 nm + 12 nm7 nm + 12 nm7 + 12 nm
SocketAM4AM4AM4
Launch date04/04/ 202206/21/202007/07/2019
Launch price299 USD449 299 USD329 USD
Core count888
Thread count161616
Base frequency3.4 GHz3.8 GHz3.6 GHz
Max. Boost (1 core)4.6 GHz (4.65 GHz unofficially)4.7 GHz (4.85 GHz unofficially)4.4 GHz
Max. boost (all-core)N/AN/AN/A
Typ boostuPB 2.0PB 2.0PB 2.0
L1i cache 32 kB/core32 kB/core32 kB/core
L1d cache 32 kB/core32 kB/core32 kB/core
L2 cache 512 kB/core512 kB/core512 kB/core
L3 cache 1× 32 MB1× 32 MB2× 16 MB
TDP65 W105 W65 W
Max. power draw during boost76 W (PPT)142 W (PPT)88 W (PPT)
Overclocking supportYesYesYes
Memory (RAM) support DDR4-3200DDR4-3200DDR4-3200
Memory channel count2× 64 bitov2× 64 bit2× 64 bit
RAM bandwidth51,2 GB/s51.2 GB/s51.2 GB/s
ECC RAM support Yes but unofficialYes but unofficialNo
PCI Express support 4.04.04.0
PCI Express lanes×16 + ×4×16 + ×4×16 + ×4
Chipset downlinkPCIe 4.0 ×4PCIe 4.0 ×4PCIe 4.0 ×4
Chipset downlink bandwidth8.0 GB/s duplex8.0 GB/s duplex8,0 GB/s duplex
BCLK100 MHz100 MHz100 MHz
Die size1× 80.7 mm² + 125 mm²1× 80.7 mm² + 125 mm²74 mm² + 125 mm²
Transistor count4.15 + 2.09 mld.4.15 + 2.09 mld.3,9 + 2.09 mld.
TIM used under IHSSolderSolderSolder
Boxed cooler in packageNoAMD Wraith StealthAMD Wraith Prism
Instruction set extensionsSSE4.2, AVX2, FMA, SHA, VAESSSE4.2, AVX2, FMA, SHA, VAESSSE4.2, AVX2, FMA, SHA
VirtualizationAMD-V, IOMMU, NPTAMD-V, IOMMU, NPTAMD-V, IOMMU, NPT
Integrated GPUN/AN/AN/A
GPU architecture
GPU: shader count
GPU: TMU count
GPU: ROP count
GPU frequency
Display outputs
Max. resolution
HW video decode
HW video encode
/* Here you can add custom CSS for the current table */ /* Lean more about CSS: https://en.wikipedia.org/wiki/Cascading_Style_Sheets */ /* To prevent the use of styles to other tables use "#supsystic-table-1374" as a base selector for example: #supsystic-table-1374 { ... } #supsystic-table-1374 tbody { ... } #supsystic-table-1374 tbody tr { ... } */




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Gaming tests

We test performance in games in four resolutions with different graphics settings. To warm up, there is more or less a theoretical resolution of 1280 × 720 px. We had been tweaking graphics settings for this resolution for a long time. We finally decided to go for the lowest possible (Low, Lowest, Ultra Low, …) settings that a game allows.

One could argue that a processor does not calculate how many objects are drawn in such settings (so-called draw calls). However, with high detail at this very low resolution, there was not much difference in performance compared to FHD (which we also test). On the contrary, the GPU load was clearly higher, and this impractical setting should demonstrate the performance of a processor with the lowest possible participation of a graphics card.

At higher resolutions, high settings (for FHD and QHD) and highest (for UHD) are used. In Full HD it’s usually with Anti-Aliasing turned off, but overall, these are relatively practical settings that are commonly used.

The selection of games was made considering the diversity of genres, player popularity and processor performance requirements. For a complete list, see Chapters 7–16. A built-in benchmark is used when a game has one, otherwise we have created our own scenes, which we always repeat with each processor in the same way. We use OCAT to record fps, or the times of individual frames, from which fps are then calculated, and FLAT to analyze CSV. Both were developed by the author of articles (and videos) from GPUreport.cz. For the highest possible accuracy, all runs are repeated three times and the average values of average and minimum fps are drawn in the graphs. These multiple repetitions also apply to non-gaming tests.

Computing tests

Let’s start lightly with PCMark 10, which tests more than sixty sub-tasks in various applications as part of a complete set of “benchmarks for a modern office”. It then sorts them into fewer thematic categories and for the best possible overview we include the gained points from them in the graphs. Lighter test tasks are also represented by tests in a web browser – Speedometer and Octane. Other tests usually represent higher load or are aimed at advanced users.

We test the 3D rendering performance in Cinebench. In R20, where the results are more widespread, but mainly in R23. Rendering in this version takes longer with each processor, cycles of at least ten minutes. We also test 3D rendering in Blender, with the Cycles render in the BMW and Classroom projects. You can also compare the latter with the test results of graphics cards (contains the same number of tiles).

We test how processors perform in video editing in Adobe Premiere Pro and DaVinci Resolve Studio 17. We use a PugetBench plugin, which deals with all the tasks you may encounter when editing videos. We also use PugetBench services in Adobe After Effects, where the performance of creating graphic effects is tested. Some subtasks use GPU acceleration, but we never turn it off, as no one will do it in practice. Some things don’t even work without GPU acceleration, but on the contrary, it’s interesting to see that the performance in the tasks accelerated by the graphics card also varies as some operations are still serviced by the CPU.

We test video encoding under SVT-AV1, in HandBrake and benchmarks (x264 HD and HWBot x265). x264 HD benchmark works in 32-bit mode (we did not manage to run 64-bit consistently on W10 and in general on newer OS’s it may be unstable and show errors in video). In HandBrake we use the x264 processor encoder for AVC and x265 for HEVC. Detailed settings of individual profiles can be found in the corresponding chapter 25. In addition to video, we also encode audio, where all the details are also stated in the chapter of these tests. Gamers who record their gameplay on video can also have to do with the performance of processor encoders. Therefore, we also test the performance of “processor broadcasting” in two popular applications OBS Studio and Xsplit.

We also have two chapters dedicated to photo editing performance. Adobe has a separate one, where we test Photoshop via PugetBench. However, we do not use PugetBench in Lightroom, because it requires various OS modifications for stable operation, and overall we rather avoided it (due to the higher risk of complications) and create our own test scenes. Both are CPU intensive, whether it’s exporting RAW files to 16-bit TIFF with ProPhotoRGB color space or generating 1:1 thumbnails of 42 lossless CR2 photos.

However, we also have several alternative photo editing applications in which we test CPU performance. These include Affinity Photo, in which we use a built-in benchmark, or XnViewMP for batch photo editing or ZPS X. Of the truly modern ones, there are three Topaz Labz applications that use AI algorithms. DeNoise AI, Gigapixel AI and Sharpen AI. Topaz Labs often and happily compares its results with Adobe applications (Photoshop and Lightroom) and boasts of better results. So we’ll see, maybe we’ll get into it from the image point of view sometime. In processor tests, however, we are primarily focused on performance.

We test compression and decompression performance in WinRAR, 7-Zip and Aida64 (Zlib) benchmarks, decryption in TrueCrypt and Aida64, where in addition to AES there are also SHA3 tests. In Aida64, we also test FPU in the chapter of mathematical calculations. From this category you may also be interested in the results of Stockfish 13 and the number of chess combinations achieved per unit time. We perform many tests that can be included in the category of mathematics in SPECworkstation 3.1. It is a set of professional applications extending to various simulations, such as LAMMPS or NAMD, which are molecular simulators. A detailed description of the tests from SPECworkstation 3.1 can be found at spec.org. We do not test 7-zip, Blender and HandBrake from the list for redundancy, because we test performance in them separately in applications. A detailed listing of SPECWS results usually represents times or fps, but we graph “SPEC ratio”, which represents gained points—higher means better.

Processor settings…

We test processors in the default settings, without active PBO2 (AMD) or ABT (Intel) technologies, but naturally with active XMP 2.0.

… and app updates

The tests should also take into account that, over time, individual updates may affect performance comparisons. Some applications are used in portable versions, which are not updated or can be kept on a stable version, but this is not the case for some others. Typically, games update over time. On the other hand, even intentional obsolescence (and testing something out of date that already behaves differently) would not be entirely the way to go.

In short, just take into account that the accuracy of the results you are comparing decreases a bit over time. To make this analysis easier for you, we indicate when each processor was tested. You can find this in the dialog box, where there is information about the test date of each processor. This dialog box appears in interactive graphs, just hover the mouse cursor over any bar.




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Methodology: how we measure power draw

Measuring CPU power consumption is relatively simple, much easier than with graphics cards. All power goes through one or two EPS cables. We also use two to increase the cross-section, which is suitable for high performance AMD processors up to sTR(X)4 or for Intel HEDT, and in fact almost for mainstream processors as well. We have Prova 15 current probes to measure current directly on the wires. This is a much more accurate and reliable way of measuring than relying on internal sensors.

The only limitation of our current probes may be when testing the most powerful processors. These already exceed the maximum range of 30 A, at which high accuracy is guaranteed. For most processors, the range is optimal (even for measuring a lower load, when the probes can be switched to a lower and more accurate range of 4 A), but we will test models with power consumption over 360 W on our own device, a prototype of which we have already built. Its measuring range will no longer be limiting, but for the time being we will be using the Prova probes in the near future.

The probes are properly set to zero and connected to a UNI-T UT71E multimeter before each measurement. It records samples of current values during the tests via the IR-USB interface and writes them in a table at one-second intervals. We can then create bar graphs with power consumption patterns. But we always write average values in bar graphs. Measurements take place in various load modes. The lowest represents an idle Windows 10 desktop. This measurement takes place on a system that had been idle for quite some time.

   

Audio encoding (FLAC) represents a higher load, but processors use only one core or one thread for this. Higher loads, where more cores are involved, are games. We test power consumption in F1 2020, Shadow of the Tomb Raider and Total War Saga: Troy in 1920 × 1080 px. In this resolution, the power consumption is usually the highest or at least similar to that in lower or higher resolutions, where in most cases the CPU power draw rather decreases due to its lower utilization.

Like most motherboard manufacturers, we too ignore the time limit for “Tau”, after which the power consumption is to be reduced from the PL2 boost limit (when it exceeds the TDP) to the TDP/PL1 value, recommended by Intel, in our tests. This means that neither the power draw nor the clock speed after 56 seconds of higher load does not decrease and the performance is kept stable with just small fluctuations. We had been considering whether or not to respect the Tau. In the end, we decided not to because the vast majority of users won’t either, and therefore the results and comparisons would be relatively uninteresting. The solution would be to test with and without a power limit, but this is no longer possible due to time requirements. We will pay more attention to the behavior of PL2 in motherboard tests, where it makes more sense.

We always use motherboards with extremely robust, efficient VRM, so that the losses on MOSFETs distort the measured results as little as possible and the test setups are powered by a high-end 1200 W BeQuiet! Dark Power Pro 12 power supply. It is strong enough to supply every processor, even with a fully loaded GeForce RTX 3080, and at the same time achieves above-standard efficiency even at lower load. For a complete overview of test setup components, see Chapter 5 of this article.




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Methodology: temperature and clock speed tests

When choosing a cooler, we eventually opted for Noctua NH-U14S. It has a high performance and at the same time there is also the TR4-SP3 variant designed for Threadripper processors. It differs only by the base, the radiator is otherwise the same, so it will be possible to test and compare all processors under the same conditions. The fan on the NH-U14S cooler is set to a maximum speed of 1,535 rpm during all tests.

Measurements always take place on a bench-wall in a wind tunnel which simulates a computer case, with the difference that we have more control over it.

System cooling consists of four Noctua NF-S12A PWM fans, which are in an equilibrium ratio of two at the inlet and two at the outlet. Their speed is set at a fixed 535 rpm, which is a relatively practical speed that is not needed to be exceeded. In short, this should be the optimal configuration based on our tests of various system cooling settings.

It is also important to maintain the same air temperature around the processors. Of course, this also changes with regard to how much heat a particular processor produces, but at the inlet of the tunnel it must always be the same for accurate comparisons. In our air-conditioned test lab, it is currently in the range of 21–21.3 °C.

Maintaining a constant inlet temperature is necessary not only for a proper comparison of processor temperatures, but especially for unbiased performance comparisons. Trend of clock speed and especially single-core boost depends on the temperature. In the summer at higher temperatures, processors may be slower in living spaces than in the winter.

For Intel processors, we register the maximum core temperature for each test, usually of all cores. These maximum values are then averaged and the result is represented by the final value in the graph. From the outputs of single-threaded load, we only pick the registered values from active cores (these are usually two and alternate during the test). It’s a little different with AMD processors. They don’t have temperature sensors for every core. In order for the procedure to be as methodically as possible similar to that applied on Intel processors, the average temperature of all cores is defined by the highest value reported by the CPU Tdie sensor (average). For single-threaded load, however, we already use a CPU sensor (Tctl/Tdie), which usually reports a slightly higher value, which better corresponds to the hotspots of one or two cores. But these values as well as the values from all internal sensors must be taken with a grain of salt, the accuracy of the sensors varies across processors.

Clock speed evaluation is more accurate, each core has its own sensor even on AMD processors. Unlike temperatures, we plot average clock speed values during tests in graphs. We monitor the temperature and clock speed of the processor cores in the same tests, in which we also measure the power consumption. And thus, gradually from the lowest load level on the desktop of idle Windows 10, through audio encoding (single-threaded load), gaming load in three games (F1 2020, Shadow of the Tomb Raider and Total War Saga: Troy), to a 10-minute load in Cinebench R23 and the most demanding video encoding with the x264 encoder in HandBrake.

To record the temperatures and clock speed of the processor cores, we use HWiNFO, in which sampling is set to two seconds. With the exception of audio encoding, the graphs always show the averages of all processor cores in terms of temperatures and clock speed. During audio encoding, the values from the loaded core are given.




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Test setup

Noctua NH-U14S cooler
Patriot Blackout memory (4× 8 GB, 3600 MHz/CL18)
MSI RTX 3080 Gaming X Trio graphics card
2× SSD Patriot Viper VPN100 (512 GB + 2 TB)
BeQuiet! Dark Power Pro 12 1200 W PSU

Test configurationTest configuration
CPU coolerNoctua NH-U14S
Thermal compoundNoctua NT-H2
Motherboard *MSI MEG X570 Ace, MEG Z690 Unify, MAG Z690 Tomahawk WiFi DDR4, Z590 Ace, MSI MEG X570 Ace or MSI MEG Z490 Ace
Memory (RAM)Patriot Blackout, 4× 8 GB, 3600 MHz/CL18
Graphics cardMSI RTX 3080 Gaming X Trio w/o Resizable BAR
SSD2× Patriot Viper VPN100 (512 GB + 2 TB)
PSUBeQuiet! Dark Power Pro 12 (1200 W)
/* Here you can add custom CSS for the current table */ /* Lean more about CSS: https://en.wikipedia.org/wiki/Cascading_Style_Sheets */ /* To prevent the use of styles to other tables use "#supsystic-table-1326" as a base selector for example: #supsystic-table-1326 { ... } #supsystic-table-1326 tbody { ... } #supsystic-table-1326 tbody tr { ... } */
* We use the following BIOSes on motherboards. For MSI MMEG X570 Ace v1E, for MEG Z690 Unify v10,  MAG Z690 Tomahawk WiFi DDR4 v11 , for MEG Z590 Ace v1.14 and for MSI MEG Z490 Ace v17.

Note: Graphics drivers used at the time of testing: Nvidia GeForce 466.77 and OS Windows 10 build 19043.

Intel CPUs are tested on the MSI MEG Z690 Unify, MAG Z490 Tomahawk WiFi DDR4, Z590 Ace and Z490 Ace motherboards. With MSI MEG Z690 Unify, the memory used is DDR5 Kingston Fury Beast (2× 16 GB, 5200 MHz/CL40):

     

     




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

3DMark

We use 3DMark Professional for the tests and the following tests: Night Raid (DirectX 12), Fire Strike (DirectX 11) and Time Spy (DirectX 12). In the graphs you will find partial CPU scores, combined scores, but also graphics scores. You can find out to what extent the given processor limits the graphics card.










At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Assassin’s Creed: Valhalla

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 12; no extra settings; test scene: built-in benchmark.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset Low; API DirectX 12; extra settings Anti-Aliasing: low; test scene: built-in benchmark.

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: built-in benchmark.



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra High; API DirectX 12; no extra settings; test scene: built-in benchmark.

   



At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Borderlands 3

Test environment: resolution 1280 × 720 px; graphics settings preset Very Low; API DirectX 12; no extra settings; test scene: built-in benchmark.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: None; test scene: built-in benchmark.



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: built-in benchmark.

   



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra; API DirectX 12; no extra settings; test scene: built-in benchmark.

   





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Counter-Strike: GO

Test environment: resolution 1280 × 720 px; lowest graphics settings and w/o Anti-Aliasing, API DirectX 9; test platform script with Dust 2 map tour.

   



Test environment: resolution 1920 × 1080 px; high graphics settings and w/o Anti-Aliasing, API DirectX 9; test platform script with Dust 2 map tour.

   



Test environment: resolution 2560 × 1440 px; high graphics settings; 4× MSAA, API DirectX 9; test platform script with Dust 2 map tour.



Test environment: resolution 3840 × 2160 px; very high graphics settings; 4× MSAA, API DirectX 9; test platform script with Dust 2 map tour.

   





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Cyberpunk 2077

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 12; no extra settings; test scene: custom (Little China).

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: custom (Little China).

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: custom (Little China).



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra; API DirectX 12; no extra settings; test scene: custom (Little China).

   





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

DOOM Eternal

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API Vulkan; extra settings Present From Compute: off, Motion Blur: Low, Depth of Field Anti-Aliasing: off; test scene: custom.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API Vulkan; extra settings Present From Compute: on, Motion Blur: High, Depth of Field Anti-Aliasing: off; test scene: custom.

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API Vulkan; extra settings Present From Compute: on, Motion Blur: High, Depth of Field Anti-Aliasing: on; test scene: custom.



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra Nightmare; API Vulkan; extra settings Present From Compute: on, Motion Blur: High, Depth of Field Anti-Aliasing: on; test scene: custom.

   





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

F1 2020

Test environment: resolution 1280 × 720 px; graphics settings preset Ultra Low; API DirectX 12; extra settings Anti-Aliasing: off, Anisotropic Filtering: off; test scene: built-in benchmark (Australia, Clear/Dry, Cycle).

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: off, Skidmarks Blending: off; test scene: built-in benchmark (Australia, Clear/Dry, Cycle).

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: TAA, Skidmarks Blending: off; test scene: built-in benchmark (Australia, Clear/Dry, Cycle).



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra High; API DirectX 12; extra settings Anti-Aliasing: TAA, Skidmarks Blending: off; test scene: built-in benchmark (Australia, Clear/Dry, Cycle).





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Metro Exodus

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 12; no extra settings test scene: built-in benchmark.



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: built-in benchmark.



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: built-in benchmark.



Test environment: resolution 3840 × 2160 px; graphics settings preset Extreme; API DirectX 12; no extra settings; test scene: built-in benchmark.



At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Microsoft Flight Simulator

Disclaimer: The performance of this game changes and improves frequently due to continuous updates. We verify the consistency of the results by re-testing the Ryzen 9 5900X processor before each measurement. In case of significant deviations, we discard the older results and start building the database from scratch. Due to the incompleteness of the MFS results, we do not use MFS to calculate the average gaming performance of the processors.

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 11; extra settings Anti-Aliasing: off; test scene: custom (Paris-Charles de Gaulle, Air Traffic: AI, February 14, 9:00) autopilot: from 1000 m until hitting the terrain.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset Low; API DirectX 11; extra settings Anti-Aliasing: off; test scene: custom (Paris-Charles de Gaulle, Air Traffic: AI, February 14, 9:00) autopilot: from 1000 m until hitting the terrain.

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 11; extra settings Anti-Aliasing: TAA; test scene: custom (Paris-Charles de Gaulle, Air Traffic: AI, February 14, 9:00) autopilot: from 1000 m until hitting the terrain.



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra; API DirectX 11; extra settings Anti-Aliasing: TAA; test scene: custom (Paris-Charles de Gaulle, Air Traffic: AI, February 14, 9:00) autopilot: from 1000 m until hitting the terrain.

   





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Shadow of the Tomb Raider

Test environment: resolution 1280 × 720 px; graphics settings preset Lowest; API DirectX 12; extra settings Anti-Aliasing: off; test scene: built-in benchmark.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: off; test scene: built-in benchmark.

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: TAA; test scene: built-in benchmark.



Test environment: resolution 3840 × 2160 px; graphics settings preset Highest; API DirectX 12; extra settings Anti-Aliasing: TAA; test scene: built-in benchmark.





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Total War Saga: Troy

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 11; no extra settings; test scene: built-in benchmark.



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 11; no extra settings; test scene: built-in benchmark.



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 11; no extra settings; test scene: built-in benchmark.



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra; API DirectX 11; no extra settings; test scene: built-in benchmark.





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Overall gaming performance

To calculate average gaming performance, we normalized the Intel Core i7-11900K processor. The percentage differences of all other processors are based on this, with each of the games contributing an equal weight to the final result. To see exactly what the formula we use to arrive at each value looks like, see „New average CPU score measuring method“.











At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Gaming performance per euro







At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

PCMark








Geekbench





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Speedometer (2.0) and Octane (2.0)

Test environment: We’re using a portable version of Google Chrome (91.0.472.101) 64-bit so that real-time results are not affected by browser updates. GPU hardware acceleration is enabled as each user has in the default settings.



Note: The values in the graphs represent the average of the points obtained in the subtasks, which are grouped according to their nature into seven categories (Core language features, Memory and GC, Strings and arrays, Virtual machine and GC, Loading and Parsing, Bit and Math operations and Compiler and GC latency).










At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Cinebench R20


Cinebench R23



Blender@Cycles

Test environment: We use well-known projects BMW (510 tiles) and Classroom (2040 tiles) and renderer Cycles. Render settings are set to None, with which all the work falls on the CPU.



LuxRender (SPECworkstation 3.1)




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Adobe Premiere Pro (PugetBench)

Test environment: set of PugetBench tests. App version of Adobe Premiere Pro is 15.2.

































At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

DaVinci Resolve Studio (PugetBench)

Test environment: set of PugetBench tests, test type: standard. App version of DaVinci Resolve Studio is 17.2.1 (build 12).
























At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Graphics effects: Adobe After Effects

Test environment: set of PugetBench tests. App version of Adobe After Effects is 18.2.1.



































At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

HandBrake

Test environment: For video conversion we’re using a 4K video LG Demo Snowboard with a 43,9 Mb/s bitrate. AVC (x264) and HEVC (x265) profiles are set for high quality and encoder profiles are “slow”. HandBrake version is 1.3.3 (2020061300).

x264 and x265 benchmarks




SVT-AV1

Test environment: We are encoding a short, publicly available sample park_joy_2160p50.y4m: uncompressed video 4096 × 2160 px, 8bit, 50 fps. Length is 500 frames with encoding quality set to 6 which makes the encoding still relatively slow. This test can make use of the AVX2 i AVX-512 instructions.

Version: SVT-AV1 Encoder Lib v0.8.7-61-g685afb2d via FFMpeg N-104429-g069f7831a2-20211026 (64bit)
Build from: https://github.com/BtbN/FFmpeg-Builds/releases
Command line: ffmpeg.exe -i “park_joy_2160p50.y4m” -c:v libsvtav1 -rc 0 -qp 55 -preset 6 -f null output.webm




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Audio encoding

Test environment: Audio encoding is done using command line encoders, we measure the time it takes for the conversion to finish. The same 42-minute long 16-bit WAV file (stereo) with 44.1 kHz is always used (Love Over Gold by Dire Straits album rip in a single audio file).

Encoder settings are selected to achieve maximum or near maximum compression. The bitrate is relatively high, with the exception of lossless FLAC of about 200 kb/s.

Note: These tests measure single-thread performance.

FLAC: reference encoder 1.3.2, 64-bit build. Launch options: flac.exe -s -8 -m -e -p -f

MP3: encoder lame3.100.1, 64-bit build (Intel 19 Compiler) from RareWares. Launch options: lame.exe -S -V 0 -q 0

AAC: uses Apple QuickTime libraries, invoked through the application from the command line, QAAC 2.72, 64-bit build, Intel 19 Compiler (does not require installation of the whole Apple package). Launch options: qaac64.exe -V 100 -s -q 2

Opus: reference encoder 1.3.1, Launch options: opusenc.exe –comp 10 –quiet –vbr –bitrate 192




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Broadcasting

Test environment: Applications OBS Studio and Xsplit. We’re using the built-in benchmark (scene Australia, Clear/Dry, Cycle) in F1 2020, in a resolution of 2560 × 1440 px and the same graphics settings, as with standard game performance tests. Thanks to this, we can measure the performance decrease if you record your gameplay with the x264 software encoder while playing. The output is 2560 × 1440 px at 60 fps.







At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Adobe Photoshop (PugetBench)

Test environment: set of PugetBench tests. App version of Adobe Photoshop is 22.4.2.


















Adobe Lightroom Classic

Test environment: With the settings above, we export 42 uncompressed .CR2 (RAW Canon) photos with a size of 20 Mpx. Then we create 1:1 previews from them, which also represent one of the most processor intensive tasks in Lightroom. The version of Adobe Lightroom Classic is 10.3




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Affinity Photo (benchmark)

Test environment: built-in benchmark.





Topaz Labs AI apps

Topaz DeNoise AI, Gigapixel AI and Sharpen AI. These single-purpose applications are used for restoration of low-quality photos. Whether it is high noise (caused by higher ISO), raster level (typically after cropping) or when something needs extra focus. The AI performance is always used.

Test settings for Topaz Labs applications. DeNoise AI, Gigapixel AI and Sharpen AI, left to right. Each application has one of the three windows

Test environment: As part of batch editing, 42 photos with a lower resolution of 1920 × 1280 px are processed, with the settings from the images above. DeNoise AI is in version 3.1.2, Gigapixel in 5.5.2 and Sharpen AI in 3.1.2.



The processor is used for acceleration (and high RAM allocation), but you can also switch to the GPU

XnViewMP

Test environment: XnViewMP is finally a photo-editor for which you don’t have to pay. At the same time, it uses hardware very efficiently. In order to achieve more reasonable comparison times, we had to create an archive of up to 1024 photos, where we reduce the original resolution of 5472 × 3648 px to 1980 × 1280 px and filters with automatic contrast enhancement and noise reduction are also being applied during this process. We use 64-bit portable version 0.98.4.

Zoner Photo Studio X

Test environment: In Zoner Photo Studio X we convert 42 .CR2 (RAW Canon) photos to JPEG while keeping the original resolution (5472 × 3648 px) at the lowest possible compression, with the ZPS X profile ”high quality for archival”.




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

WinRAR 6.01

7-Zip 19.00







At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

TrueCrypt 7.1a






Aida64 (AES, SHA3)





At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Y-cruncher



Stockfish 13

Test environment: Host for the Stockfish 13 engine is a chess app Arena 2.0.1, build 2399.


Aida64, FPU tests




FSI (SPECworkstation 3.1)



Kirchhoff migration (SPECworkstation 3.1)

Python36 (SPECworkstation 3.1)



SRMP (SPECworkstation 3.1)

Octave (SPECworkstation 3.1)


FFTW (SPECworkstation 3.1)



Convolution (SPECworkstation 3.1)

CalculiX (SPECworkstation 3.1)




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

RodiniaLifeSci (SPECworkstation 3.1)





WPCcfd (SPECworkstation 3.1)

Poisson (SPECworkstation 3.1)

LAMMPS (SPECworkstation 3.1)





NAMD (SPECworkstation 3.1)






At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Memory tests…




… and cache (L1, L2, L3)












Note: The L3 memory results, at least with our component configuration, could not be measured in AIDA64, the corresponding application windows remained empty. Tested with older versions as well as with the latest one (6.60.5900).




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Processor power draw curve




At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Average processor power draw










At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Performance per watt






At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Achieved CPU clock speed









At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

CPU temperature










At the eleventh hour, but still. The long-awaited Ryzen 7 5700X is here. However, we won’t be writing about the successor to the Ryzen 7 3700X as a significantly cheaper alternative to the Ryzen 7 5800X. The new octa-core Ryzen 7 5700X is primarily more economical compared to the higher-end model. Its power draw is just half in some tasks, which means that temperatures are also significantly lower.

Conclusion

Finally, AMD has an 8-core processor, which shows just how efficient the Zen 3 architecture is, as long as frequencies aren’t pushed too far. While the Ryzen 5800X is the least efficient Vermeer, the 5700X is one of the most efficient. In a massive multithreaded workload, this processor’s efficiency is even on par with the Ryzen 9 5950X.

With eight cores, the Ryzen 7 5700X may not be among the top of the line, but it is still an attractive compromise that can be well suited to a gaming rig that is expected to deliver higher multi-threaded performance. But first, then, those games. The Ryzen 7 5700X doesn’t fall more than 8 % behind the more aggressively clocked R7 5800X on average, and even that’s at an extremely low, essentially synthetic 720p resolution. In the more practical 1080p and 1440p, it’s already within 5 %. And even that small difference is often rather smaller. The average gap is widened significantly on the 5700X in particular, by the 26–28 % slower Counter-Strike: GO. There is also a big performance difference in favour of the R7 5800X in DOOM Eternal (8–11%), in F1 2020 or in Microsoft Flight Simulator (up to 8 % in FHD), but in many titles the Ryzen 7 5700X falls behind by virtually nothing. Whether it’s Metro Exodus, Shadow of the Tomb Raider, Assassin’s Creed: Valhalla or even Total War Saga: Troy, in which differences in CPU performance tend to show up. The thread count matters more than the frequency in TWST.

The gaming performance of the R7 5700X is slightly lower compared to the R7 5800X, but due to the significantly lower power draw (up to 28 % in games) the performance per watt is higher. And quite significantly. But we will come back to power draw. So for now, just briefly, so that we have a closed chapter around the operation in games.

In the PCMark subtests, it’s easy to see which applications are single-threaded and which make more intensive use of multiple cores. In the single-threaded ones, the differences are minimal, as the Ryzen 7 5700X is only symbolically slower here. Bigger, but still relatively small, differences are during app initialization, photo editing (PCMark tests this in the free Gimp) or during 3D rendering. On the web, apart from more demanding tasks such as virtualization, compilation or working with strings and arrays, the performance difference is also indistinguishable. The 500 MHz difference, by which the Ryzen 7 5700X is slower, is between 10-12 % in a “hard” multi-threaded workload. Typically 3D rendering, video encoding with x264/265 or AV1 encoders will fit into this interval. For video editing, the difference between the R7 5700X and R7 5800X is often already under 10 %, unless it’s just live 4K AVC video playback in Adobe Premiere Pro, where the Ryzen 7 5700X achieves significantly lower fps due to the lower frequencies. This is because it is neither a single-threaded load nor does it engage all eight cores. This is typically the situation where the R7 5700X can fall furthest behind the R7 5800X.

When it comes to bulk photo editing, the performance difference is often only 5 % to the detriment of the Ryzen 7 5700X. The processor is loaded to the max here, across all threads, but the frequency doesn’t matter that much. Similarly, neither when (de)compressing. For (de)encryption the difference is again around 12 %. And then there are pure single-threaded tests where the performance of the R7 5700X is like that of the R5 5600X. Although it is usually a hair higher. Really only negligibly, and we point this out only to highlight the more stable boost. It drops here and there on the R5 5600X. The average of all samples is therefore 10 MHz lower than on the R7 5700X, with which it holds without faltering at 4650 MHz.

Best for last – low power draw and high efficiency. The 50 % reduction over the R7 5800X applies to peak workloads, such as rendering. Naturally, with a lower load, the difference in power draw is reduced, but it’s still high, always above 20 % in games. Instead of 91W (R7 5800X), the R7 5700X in Total War Saga: Troy is down to 66 W (at higher resolutions like FHD, and lower, it’s even a bit less). The Ryzen 7 5700X is always significantly more efficient or delivers more performance per unit of power. That’s even in a single-threaded workloads. And that’s even compared to the R5 5600X, for example, where we’ve praised the efficiency and that doesn’t change. Except the R7 5700X is still some 14 % (5W) below that processor. The R7 5700X is a hair more efficient (compared to the R5 5600X) even in idle mode.

Nice to see are the temperature results as well. When comparing the maximum performance, the difference between the R7 5800X and R7 5700X is almost 30°C. In games, it’s proportionally less again, but it’s still pretty much the same as in single-threaded workloads. There, the Ryzen 7 5800X, with a weaker cooler, can already get to throttling temperatures, which is not the case with the Ryzen 7 5700X.

English translation and edit by Jozef Dudáš

AMD Ryzen 7 5700X
+ High-end single-thread performance
+ Perfect efficiency or performance per unit of power draw
+ Significantly more efficient than Ryzen 7 5800X
+ Attractive price-to-multi-threaded performance ratio
+ "Universal" processor for faster computing and gaming at an affordable price
+ High performance per clock (IPC)
+ Low temperatures with a decent headroom for PBO2 or manual overclocking
+ Modern 7nm manufacturing process
- Slightly worse price/performance ratio than the Ryzen 7 5800X
- Does not have an integrated graphics core
Approximate retail price: 300 EUR
/* Here you can add custom CSS for the current table */ /* Lean more about CSS: https://en.wikipedia.org/wiki/Cascading_Style_Sheets */ /* To prevent the use of styles to other tables use "#supsystic-table-1375" as a base selector for example: #supsystic-table-1375 { ... } #supsystic-table-1375 tbody { ... } #supsystic-table-1375 tbody tr { ... } */

Games for testing are from Jama levova

Special thanks to Blackmagic Design (for a DaVinci Resolve Studio license), Topaz Labs (for licenses for DeNoise AI, Gigapixel AI and Sharpen AI) and Zoner (for Photo Studio X license)