Site icon HWCooling.net

Intel Core i3-14100F: Four cores whipped to the max

Average processor power draw

It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Intel Core i3-14100F in detail

The third-generation Core i3 processor for the LGA 1700 platform is built on the smallest Intel big.LITTLE chip, physically with six P cores (i.e., stepping H0).

There are four of them active in this case again and it is an 8-thread processor. It is possible that prospectively it will be the fastest quad-core processor, unless the Ci3-14100F is beaten by Intel within Bartlett Lake, where perhaps instead of even more aggressively clocked four cores two will be added, if at all this generation will see the light of day (there is still a question mark hanging over it).

The Core i3 Raptor Lake with 58 W TDP differs from its predecessors with higher clock speeds. Intel increases these by 200 MHz from generation to generation. Compared to the Core i3-13100/F (4300 MHz), it’s already 4500 MHz for all (4) P cores. The PL2 value is 89 W, as is the case with the Core i3-12100/F (Alder Lake), but that doesn’t mean comparable power consumption.The latter is higher with the Core i3-14100/F, the highest. And quite naturally so, as the manufacturing process hasn’t changed (although some minor “silent” revisions may have occurred over time) and the CPU core clock speeds are increasing.

The parameters talk about the power limit, which may not be used to the fullest for some processors and for others goes to the edge, which is also the case with the latest Core i3-14100/F processors. In the tests, I’ll be looking at the variant with the letter “F” in the designation, which, unlike the Core i3-14100, has a deactivated graphics core.

Rather than office PCs (which would require a graphics card to be added, which doesn’t make much sense in most cases), the Core i3-14100F is primarily aimed at low-end gaming PCs. Or to simpler systems for which for some reason the iGPU (Ci3-14100) is not enough and a graphics card is required.

In this segment, Intel is somewhat without competition, AMD abandoned the production of low-end processors already in the generation of Ryzen 3000 (Matisse), where quad-core models Ryzen 3 3100 and Ryzen 3 3300X were only available for a while, at the beginning (at least in Europe, that is).

ManufacturerIntelIntelIntel
LineCore i3Core i3Core i3
SKU14100F13100F12100F
CodenameRaptor Lake RefreshRaptor LakeAlder Lake
CPU microarchitectureGolden Cove (P)Golden Cove (P)Golden Cove (P)
Manufacturing node7 nm7 nm7 nm
SocketLGA 1700LGA 1700LGA 1700
Launch date01/08/202401/04/202301/04/2022
Launch price109 USD109 USD97 USD
Core count444
Thread count888
Base frequency3.5 GHz (P)3.4 GHz (P)3.3 GHz (P)
Max. Boost (1 core)4.7 GHz (P)4.5 GHz (P)4.3 GHz (P)
Max. boost (all-core)4.5 GHz4.3 GHz4.1 GHz (P)
Typ boostuTB 2.0TB 2.0TB 2.0
L1i cache 32 kB/core (P)32 kB/core (P)32 kB/core (P)
L1d cache 48 kB/core (P)48 kB/core (P)48 kB/core (P)
L2 cache 1,25 MB/core (P)1.25 MB/core (P)1.25 MB/core (P)
L3 cache 1× 12 MB1× 12 MB1× 12 MB
TDP58 W58 W58 W
Max. power draw during boost89 W (PL2)89 W (PL2)89 W (PL2)
Overclocking supportNoNoNo
Memory (RAM) support DDR5-4800/DDR4-3200DDR5-4800/DDR4-3200DDR5-4800/DDR4-3200
Memory channel count2× 64 bit2× 64 bit2× 64 bit
RAM bandwidth76.8 GB/s or 51.2 GB/s (DDR4)76.8 GB/s or 512 GB/s (DDR4)76.8 GB/s or 51.2 GB/s (DDR4)
ECC RAM support NoNoNo
PCI Express support 5.0/4.05.0/4.05.0/4.0
PCI Express lanes×16 (5.0) + ×4 (4.0)×16 (5.0) + ×4 (4.0)×16 (5.0) + ×4 (4.0)
Chipset downlinkDMI 4.0 ×8DMI 4.0 ×8DMI 4.0 ×8
Chipset downlink bandwidth16.0 GB/s duplex16.0 GB/s duplex16.0 GB/s duplex
BCLK100 MHz100 MHz100 MHz
Die size~160 mm²~160 mm²~160 mm²
Transistor count? bn.? bn.? bn.
TIM used under IHSSolderSolderSolder
Boxed cooler in packageIntel Laminar RM1Intel Laminar RM1Intel Laminar RM1
Instruction set extensionsSSE4.2, AVX2, FMA, SHA, VNNI (256-bit), GNA 3.0, VAES (256-bit), vProSSE4.2, AVX2, FMA, SHA, VNNI (256-bit), GNA 3.0, VAES (256-bit), vProSSE4.2, AVX2, FMA, SHA, VNNI (256-bit), GNA 2.0, VAES (256-bit)
VirtualizationVT-x, VT-d, EPTVT-x, VT-d, EPTVT-x, VT-d, EPT
Integrated GPUN/AN/AN/A
GPU architecture
GPU: shader count
GPU: TMU count
GPU: ROP count
GPU frequency
Display outputs
Max. resolution
HW video encode
HW video decode
/* Here you can add custom CSS for the current table */ /* Lean more about CSS: https://en.wikipedia.org/wiki/Cascading_Style_Sheets */ /* To prevent the use of styles to other tables use "#supsystic-table-2935" as a base selector for example: #supsystic-table-2935 { ... } #supsystic-table-2935 tbody { ... } #supsystic-table-2935 tbody tr { ... } */




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Gaming tests

We test performance in games in four resolutions with different graphics settings. To warm up, there is more or less a theoretical resolution of 1280 × 720 px. We had been tweaking graphics settings for this resolution for a long time. We finally decided to go for the lowest possible (Low, Lowest, Ultra Low, …) settings that a game allows.

One could argue that a processor does not calculate how many objects are drawn in such settings (so-called draw calls). However, with high detail at this very low resolution, there was not much difference in performance compared to FHD (which we also test). On the contrary, the GPU load was clearly higher, and this impractical setting should demonstrate the performance of a processor with the lowest possible participation of a graphics card.

At higher resolutions, high settings (for FHD and QHD) and highest (for UHD) are used. In Full HD it’s usually with Anti-Aliasing turned off, but overall, these are relatively practical settings that are commonly used.

The selection of games was made considering the diversity of genres, player popularity and processor performance requirements. For a complete list, see Chapters 7–16. A built-in benchmark is used when a game has one, otherwise we have created our own scenes, which we always repeat with each processor in the same way. We use OCAT to record fps, or the times of individual frames, from which fps are then calculated, and FLAT to analyze CSV. Both were developed by the author of articles (and videos) from GPUreport.cz. For the highest possible accuracy, all runs are repeated three times and the average values of average and minimum fps are drawn in the graphs. These multiple repetitions also apply to non-gaming tests.

Computing tests

Let’s start lightly with PCMark 10, which tests more than sixty sub-tasks in various applications as part of a complete set of “benchmarks for a modern office”. It then sorts them into fewer thematic categories and for the best possible overview we include the gained points from them in the graphs. Lighter test tasks are also represented by tests in a web browser – Speedometer and Octane. Other tests usually represent higher load or are aimed at advanced users.

We test the 3D rendering performance in Cinebench. In R20, where the results are more widespread, but mainly in R23. Rendering in this version takes longer with each processor, cycles of at least ten minutes. We also test 3D rendering in Blender, with the Cycles render in the BMW and Classroom projects. You can also compare the latter with the test results of graphics cards (contains the same number of tiles).

We test how processors perform in video editing in Adobe Premiere Pro and DaVinci Resolve Studio 17. We use a PugetBench plugin, which deals with all the tasks you may encounter when editing videos. We also use PugetBench services in Adobe After Effects, where the performance of creating graphic effects is tested. Some subtasks use GPU acceleration, but we never turn it off, as no one will do it in practice. Some things don’t even work without GPU acceleration, but on the contrary, it’s interesting to see that the performance in the tasks accelerated by the graphics card also varies as some operations are still serviced by the CPU.

We test video encoding under SVT-AV1, in HandBrake and benchmarks (x264 HD and HWBot x265). x264 HD benchmark works in 32-bit mode (we did not manage to run 64-bit consistently on W10 and in general on newer OS’s it may be unstable and show errors in video). In HandBrake we use the x264 processor encoder for AVC and x265 for HEVC. Detailed settings of individual profiles can be found in the corresponding chapter 25. In addition to video, we also encode audio, where all the details are also stated in the chapter of these tests. Gamers who record their gameplay on video can also have to do with the performance of processor encoders. Therefore, we also test the performance of “processor broadcasting” in two popular applications OBS Studio and Xsplit.

We also have two chapters dedicated to photo editing performance. Adobe has a separate one, where we test Photoshop via PugetBench. However, we do not use PugetBench in Lightroom, because it requires various OS modifications for stable operation, and overall we rather avoided it (due to the higher risk of complications) and create our own test scenes. Both are CPU intensive, whether it’s exporting RAW files to 16-bit TIFF with ProPhotoRGB color space or generating 1:1 thumbnails of 42 lossless CR2 photos.

However, we also have several alternative photo editing applications in which we test CPU performance. These include Affinity Photo, in which we use a built-in benchmark, or XnViewMP for batch photo editing or ZPS X. Of the truly modern ones, there are three Topaz Labz applications that use AI algorithms. DeNoise AI, Gigapixel AI and Sharpen AI. Topaz Labs often and happily compares its results with Adobe applications (Photoshop and Lightroom) and boasts of better results. So we’ll see, maybe we’ll get into it from the image point of view sometime. In processor tests, however, we are primarily focused on performance.

We test compression and decompression performance in WinRAR, 7-Zip and Aida64 (Zlib) benchmarks, decryption in TrueCrypt and Aida64, where in addition to AES there are also SHA3 tests. In Aida64, we also test FPU in the chapter of mathematical calculations. From this category you may also be interested in the results of Stockfish 13 and the number of chess combinations achieved per unit time. We perform many tests that can be included in the category of mathematics in SPECworkstation 3.1. It is a set of professional applications extending to various simulations, such as LAMMPS or NAMD, which are molecular simulators. A detailed description of the tests from SPECworkstation 3.1 can be found at spec.org. We do not test 7-zip, Blender and HandBrake from the list for redundancy, because we test performance in them separately in applications. A detailed listing of SPECWS results usually represents times or fps, but we graph “SPEC ratio”, which represents gained points—higher means better.

Processor settings…

We test processors in the default settings, without active PBO2 (AMD) or ABT (Intel) technologies, but naturally with active XMP 2.0.

… and app updates

The tests should also take into account that, over time, individual updates may affect performance comparisons. Some applications are used in portable versions, which are not updated or can be kept on a stable version, but this is not the case for some others. Typically, games update over time. On the other hand, even intentional obsolescence (and testing something out of date that already behaves differently) would not be entirely the way to go.

In short, just take into account that the accuracy of the results you are comparing decreases a bit over time. To make this analysis easier for you, we indicate when each processor was tested. You can find this in the dialog box, where there is information about the test date of each processor. This dialog box appears in interactive graphs, just hover the mouse cursor over any bar.



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Methodology: how we measure power draw

Measuring CPU power consumption is relatively simple, much easier than with graphics cards. All power goes through one or two EPS cables. We also use two to increase the cross-section, which is suitable for high performance AMD processors up to sTR(X)4 or for Intel HEDT, and in fact almost for mainstream processors as well. We have Prova 15 current probes to measure current directly on the wires. This is a much more accurate and reliable way of measuring than relying on internal sensors.

The only limitation of our current probes may be when testing the most powerful processors. These already exceed the maximum range of 30 A, at which high accuracy is guaranteed. For most processors, the range is optimal (even for measuring a lower load, when the probes can be switched to a lower and more accurate range of 4 A), but we will test models with power consumption over 360 W on our own device, a prototype of which we have already built. Its measuring range will no longer be limiting, but for the time being we will be using the Prova probes in the near future.

The probes are properly set to zero and connected to a Keysight U1231A multimeter before each measurement. It records samples of current values during the tests via the IR-USB interface and writes them in a table at one-second intervals. We can then create bar graphs with power consumption patterns. But we always write average values in bar graphs. Measurements take place in various load modes. The lowest represents an idle Windows 10 desktop. This measurement takes place on a system that had been idle for quite some time.

   

Audio encoding (FLAC) represents a higher load, but processors use only one core or one thread for this. Higher loads, where more cores are involved, are games. We test power consumption in F1 2020, Shadow of the Tomb Raider and Total War Saga: Troy in 1920 × 1080 px. In this resolution, the power consumption is usually the highest or at least similar to that in lower or higher resolutions, where in most cases the CPU power draw rather decreases due to its lower utilization.

Power limits are disabled for both Intel and AMD processors, unlocked at the PL2/PPT level. This is also the default setting for most motherboards. This means that the “Tau” timeout after 56 seconds does not reduce power consumption and clock speeds even under higher load, and performance is stable. We considered whether or not to accept the lower-power settings. In the end, we won’t, on the grounds that the vast majority of users don’t do it either and thus the results and comparisons would be rather uninteresting. The solution would indeed be to test with and without power limits, but this is already impossible time-wise in the context of processor tests. However, we won’t ignore this issue and it will be given space in motherboard tests where it makes more sense to us.
We always use motherboards with extremely robust, efficient VRM, so that the losses on MOSFETs distort the measured results as little as possible and the test setups are powered by a high-end 1200 W BeQuiet! Dark Power Pro 12 power supply. It is strong enough to supply every processor, even with a fully loaded GeForce RTX 3080, and at the same time achieves above-standard efficiency even at lower load. For a complete overview of test setup components, see Chapter 5 of this article.



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Methodology: temperature and clock speed tests

When choosing a cooler, we eventually opted for Noctua NH-U14S. It has a high performance and at the same time there is also the TR4-SP3 variant designed for Threadripper processors. It differs only by the base, the radiator is otherwise the same, so it will be possible to test and compare all processors under the same conditions. The fan on the NH-U14S cooler is set to a maximum speed of 1,535 rpm during all tests.
Measurements always take place on a bench-wall in a wind tunnel which simulates a computer case, with the difference that we have more control over it.

System cooling consists of four Noctua NF-S12A PWM fans, which are in an equilibrium ratio of two at the inlet and two at the outlet. Their speed is set at a fixed 535 rpm, which is a relatively practical speed that is not needed to be exceeded. In short, this should be the optimal configuration based on our tests of various system cooling settings.

It is also important to maintain the same air temperature around the processors. Of course, this also changes with regard to how much heat a particular processor produces, but at the inlet of the tunnel it must always be the same for accurate comparisons. In our air-conditioned test lab, it is currently in the range of 21–21.3 °C.

Maintaining a constant inlet temperature is necessary not only for a proper comparison of processor temperatures, but especially for unbiased performance comparisons. Trend of clock speed and especially single-core boost depends on the temperature. In the summer at higher temperatures, processors may be slower in living spaces than in the winter.

For Intel processors, we register the maximum core temperature for each test, usually of all cores. These maximum values are then averaged and the result is represented by the final value in the graph. From the outputs of single-threaded load, we only pick the registered values from active cores (these are usually two and alternate during the test). It’s a little different with AMD processors. They don’t have temperature sensors for every core. In order for the procedure to be as methodically as possible similar to that applied on Intel processors, the average temperature of all cores is defined by the highest value reported by the CPU Tdie sensor (average). For single-threaded load, however, we already use a CPU sensor (Tctl/Tdie), which usually reports a slightly higher value, which better corresponds to the hotspots of one or two cores. But these values as well as the values from all internal sensors must be taken with a grain of salt, the accuracy of the sensors varies across processors.

Clock speed evaluation is more accurate, each core has its own sensor even on AMD processors. Unlike temperatures, we plot average clock speed values during tests in graphs. We monitor the temperature and clock speed of the processor cores in the same tests, in which we also measure the power consumption. And thus, gradually from the lowest load level on the desktop of idle Windows 10, through audio encoding (single-threaded load), gaming load in three games (F1 2020, Shadow of the Tomb Raider and Total War Saga: Troy), to a 10-minute load in Cinebench R23 and the most demanding video encoding with the x264 encoder in HandBrake.

To record the temperatures and clock speed of the processor cores, we use HWiNFO, in which sampling is set to two seconds. With the exception of audio encoding, the graphs always show the averages of all processor cores in terms of temperatures and clock speed. During audio encoding, the values from the loaded core are given.



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Test setup

Noctua NH-U14S cooler
Kingston Fury Beast memory (2× 16 GB, 5200 MHz/CL40)
MSI RTX 3080 Gaming X Trio graphics card
2× SSD Patriot Viper VPN100 (512 GB + 2 TB)
BeQuiet! Dark Power Pro 12 1200 W PSU

Test configuration
CPU coolerNoctua NH-U14S@12 V
Thermal compoundNoctua NT-H2
Motherboard *Acc. to processor: ASRock B650E Taichi, MSI MEG X670E Ace, Asus ROG Strix Z790-E Gaming WiFi, MEG X570 Ace, MEG Z690 Unify, MAG Z690 Tomahawk WiFi DDR4, Z590 Ace, MSI MEG X570 Ace alebo MSI MEG Z490 Ace
Memory (RAM)Acc. to platform: z DDR5 G.Skill Trident Z5 Neo (2× 16 GB, 6000 MHz/CL30) a Kingston Fury Beast (2× 16 GB, 5200 MHz/CL40) a DDR4 Patriot Blackout, (4× 8 GB, 3600 MHz/CL18)
Graphics cardMSI RTX 3080 Gaming X Trio w/o Resizable BAR
SSD2× Patriot Viper VPN100 (512 GB + 2 TB)
PSUBeQuiet! Dark Power Pro 12 (1200 W)
/* Here you can add custom CSS for the current table */ /* Lean more about CSS: https://en.wikipedia.org/wiki/Cascading_Style_Sheets */ /* To prevent the use of styles to other tables use "#supsystic-table-2471" as a base selector for example: #supsystic-table-2471 { ... } #supsystic-table-2471 tbody { ... } #supsystic-table-2471 tbody tr { ... } */
* We use the following BIOSes on motherboards. For the Asus ROG Strix Z790-E Gaming WiFi, it’s v0502, for the MSI MEG X670E Ace, it’ v1.10NPRP, for the MEG X570 Ace, it’s v1E, for the MEG Z690 Unify, it’s v10, for the MAG Z690 Tomahawk WiFi DDR4, it’s v11, for the MEG Z590 Ace, it’s v1.14 and for the MEG Z490 Ace, it’s v17.

Note: The graphics drivers we use are Nvidia GeForce 466.77 and the Windows 10 OS build is 19045 at the time of testing.

Processors of other platforms are tested on MSI MEG Z690 Unify, MAG Z490 Tomahawk WiFi DDR4, Z590 Ace and Z490 Ace motherboards, MEG Z690 Unify (all Intel) and MEG X570 Ace, MEG X670E Ace (AMD).

      

      

On platforms supporting DDR5 memory, we use two different sets of modules. For more powerful processors with an “X” (AMD) or “K” (Intel) in the name, we use the faster G.Skill Trident Z5 Neo memory (2×16 GB, 6000 MHz/CL30). In the case of cheaper processors (without X or K at the end of the name), the slower Kingston Fury Beast modules (2×16 GB, 5200 MHz/CL40). But this is more or less just symbolic, the bandwidth is very high for both kits, it is not a bottleneck, and the difference in processor performance is very small, practically negligible, across the differently fast memory kits.



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

3DMark

We use 3DMark Professional for the tests and the following tests: Night Raid (DirectX 12), Fire Strike (DirectX 11) and Time Spy (DirectX 12). In the graphs you will find partial CPU scores, combined scores, but also graphics scores. You can find out to what extent the given processor limits the graphics card.









It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Assassin’s Creed: Valhalla

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 12; no extra settings; test scene: built-in benchmark.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset Low; API DirectX 12; extra settings Anti-Aliasing: low; test scene: built-in benchmark.

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: built-in benchmark.



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra High; API DirectX 12; no extra settings; test scene: built-in benchmark.

   


It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Borderlands 3

Test environment: resolution 1280 × 720 px; graphics settings preset Very Low; API DirectX 12; no extra settings; test scene: built-in benchmark.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: None; test scene: built-in benchmark.



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: built-in benchmark.

   



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra; API DirectX 12; no extra settings; test scene: built-in benchmark.

   




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Counter-Strike: GO

Test environment: resolution 1280 × 720 px; lowest graphics settings and w/o Anti-Aliasing, API DirectX 9; Test platform script with Dust 2 map tour.

   



Test environment: resolution 1920 × 1080 px; high graphics settings and w/o Anti-Aliasingu, API DirectX 9; Test platform script with Dust 2 map tour.

   



Test environment: resolution 2560 × 1440 px; high graphics settings; 4× MSAA, API DirectX 9; Test platform script with Dust 2 map tour.



Test environment: resolution 3840 × 2160 px; very high graphics settings; 4× MSAA, API DirectX 9; Test platform script with Dust 2 map tour.

   




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Cyberpunk 2077

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 12; no extra settings; test scene: custom (Little China).

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: custom (Little China).

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: custom (Little China).



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra; API DirectX 12; no extra settings; test scene: custom (Little China).

   




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

DOOM Eternal

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API Vulkan; extra settings Present From Compute: off, Motion Blur: Low, Depth of Field Anti-Aliasing: off; test scene: custom.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API Vulkan; extra settings Present From Compute: on, Motion Blur: High, Depth of Field Anti-Aliasing: off; test scene: custom.

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API Vulkan; extra settings Present From Compute: on, Motion Blur: High, Depth of Field Anti-Aliasing: on; test scene: custom.



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra Nightmare; API Vulkan; extra settings Present From Compute: on, Motion Blur: High, Depth of Field Anti-Aliasing: on; test scene: custom.

   




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

F1 2020

Test environment: resolution 1280 × 720 px; graphics settings preset Ultra Low; API DirectX 12; extra settings Anti-Aliasing: off, Anisotropic Filtering: off; test scene: built-in benchmark (Australia, Clear/Dry, Cycle).

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: off, Skidmarks Blending: off; test scene: built-in benchmark (Australia, Clear/Dry, Cycle).

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: TAA, Skidmarks Blending: off; test scene: built-in benchmark (Australia, Clear/Dry, Cycle).



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra High; API DirectX 12; extra settings Anti-Aliasing: TAA, Skidmarks Blending: off; test scene: built-in benchmark (Australia, Clear/Dry, Cycle).




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Metro Exodus

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 12; no extra settings test scene: built-in benchmark.



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: built-in benchmark.



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; no extra settings; test scene: built-in benchmark.



Test environment: resolution 3840 × 2160 px; graphics settings preset Extreme; API DirectX 12; no extra settings; test scene: built-in benchmark.


It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Microsoft Flight Simulator

Upozornenie: Výkon v tejto hre sa vplyvom priebežných aktualizácii často mení, zlepšuje. Konzistenciu výsledkov pred každým meraním overujeme re-testovávaním procesora Ryzen 7 5900X. Pri výraznejších odchýlkach staršie výsledky zahadzujeme a začíname databázu budovať odznova. Pre nekompletnosť výsledkov MFS nepoužívame pre výpočet priemerného herného výkonu procesorov.

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 11; extra settings Anti-Aliasing: off; test scene: custom (Paris-Charles de Gaulle, Air Traffic: AI, February 14, 9:00) autopilot: from 1000 m until hitting the terrain.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset Low; API DirectX 11; extra settings Anti-Aliasing: off; test scene: custom (Paris-Charles de Gaulle, Air Traffic: AI, February 14, 9:00) autopilot: from 1000 m until hitting the terrain.

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 11; extra settings Anti-Aliasing: TAA; test scene: custom (Paris-Charles de Gaulle, Air Traffic: AI, February 14, 9:00) autopilot: from 1000 m until hitting the terrain.



Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra; API DirectX 11; extra settings Anti-Aliasing: TAA; test scene: custom (Paris-Charles de Gaulle, Air Traffic: AI, February 14, 9:00) autopilot: from 1000 m until hitting the terrain.

   




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Shadow of the Tomb Raider

Test environment: resolution 1280 × 720 px; graphics settings preset Lowest; API DirectX 12; extra settings Anti-Aliasing: off; test scene: built-in benchmark.

   



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: off; test scene: built-in benchmark.

   



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 12; extra settings Anti-Aliasing: TAA; test scene: built-in benchmark.



Test environment: resolution 3840 × 2160 px; graphics settings preset Highest; API DirectX 12; extra settings Anti-Aliasing: TAA; test scene: built-in benchmark.




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Total War Saga: Troy

Test environment: resolution 1280 × 720 px; graphics settings preset Low; API DirectX 11; no extra settings; test scene: built-in benchmark.



Test environment: resolution 1920 × 1080 px; graphics settings preset High; API DirectX 11; no extra settings; test scene: built-in benchmark.



Test environment: resolution 2560 × 1440 px; graphics settings preset High; API DirectX 11; no extra settings; test scene: built-in benchmark.



strong>Test environment: resolution 3840 × 2160 px; graphics settings preset Ultra; API DirectX 11; no extra settings; test scene: built-in benchmark.




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Overall gaming performance

To calculate average gaming performance, we normalized the Intel Core i7-11900K processor. The percentage differences of all other processors are based on this, with each of the games contributing an equal weight to the final result. To see exactly what the formula we use to arrive at each value looks like, see „New average CPU score measuring method“.










It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Gaming performance per euro






It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

PCMark








Geekbench




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Speedometer (2.0) and Octane (2.0)

Test environment: We’re using a portable version of Google Chrome (91.0.472.101) 64-bit so that real-time results are not affected by browser updates. GPU hardware acceleration is enabled as each user has in the default settings.



Note: The values in the graphs represent the average of the points obtained in the subtasks, which are grouped according to their nature into seven categories (Core language features, Memory and GC, Strings and arrays, Virtual machine and GC, Loading and Parsing, Bit and Math operations and Compiler and GC latency).









It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Cinebench R20


Cinebench R23



Blender@Cycles

Test environment: We use well-known projects BMW (510 tiles) and Classroom (2040 tiles) and renderer Cycles. Render settings are set to None, with which all the work falls on the CPU.



LuxRender (SPECworkstation 3.1)



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Adobe Premiere Pro (PugetBench)

Test environment: set of PugetBench tests. App version of Adobe Premiere Pro is 15.2.
































It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

DaVinci Resolve Studio (PugetBench)

Test environment: set of PugetBench tests, test type: standard. App version of DaVinci Resolve Studio is 17.2.1 (build 12).























It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Graphics effects: Adobe After Effects

Test environment: set of PugetBench tests. App version of Adobe After Effects is 18.2.1.


































It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

HandBrake

   

Test environment: For video conversion we’re using a 4K video LG Demo Snowboard with a 43,9 Mb/s bitrate. AVC (x264) and HEVC (x265) profiles are set for high quality and encoder profiles are “slow”. HandBrake version is 1.3.3 (2020061300).

Disclaimer: For big.LITTLE-based processors, there is a missing result in some tests. This is because they didn’t scale properly with P cores and the achieved performance was too low. In such cases it is indeed possible to force performance on all cores, but this does not happen by default at the user level. To avoid creating the illusion in some cases that measured results such as those presented in the graphs are normally achieved, we omit these. However, these are a negligible fraction of the total set of test results.

Benchmarky x264 a x265




SVT-AV1

Test environment: We are encoding a short, publicly available sample park_joy_2160p50.y4m: uncompressed video 4096 × 2160 px, 8bit, 50 fps. Length is 585 frames with encoding quality set to 6 which makes the encoding still relatively slow. This test can make use of the AVX2 i AVX-512 instructions.

Version: SVT-AV1 Encoder Lib v0.8.7-61-g685afb2d via FFMpeg N-104429-g069f7831a2-20211026 (64bit)
Build from: https://github.com/BtbN/FFmpeg-Builds/releases
Command line: ffmpeg.exe -i “park_joy_2160p50.y4m” -c:v libsvtav1 -rc 0 -qp 55 -preset 6 -f null output.webm



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Audio encoding

Test environment: Audio encoding is done using command line encoders, we measure the time it takes for the conversion to finish. The same 42-minute long 16-bit WAV file (stereo) with 44.1 kHz is always used (Love Over Gold by Dire Straits album rip in a single audio file).

Encoder settings are selected to achieve maximum or near maximum compression. The bitrate is relatively high, with the exception of lossless FLAC of about 200 kb/s.

Note: These tests measure single-thread performance.

FLAC: reference encoder 1.3.2, 64-bit build. Launch options: flac.exe -s -8 -m -e -p -f

MP3: encoder lame3.100.1, 64-bit build (Intel 19 Compiler) from RareWares. Launch options: lame.exe -S -V 0 -q 0

AAC: uses Apple QuickTime libraries, invoked through the application from the command line, QAAC 2.72, 64-bit build, Intel 19 Compiler (does not require installation of the whole Apple package). Launch options: qaac64.exe -V 100 -s -q 2

Opus: reference encoder 1.3.1, Launch options: opusenc.exe –comp 10 –quiet –vbr –bitrate 192



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Broadcasting

Test environment: Applications OBS Studio and Xsplit. We’re using the built-in benchmark (scene Australia, Clear/Dry, Cycle) in F1 2020, in a resolution of 2560 × 1440 px and the same graphics settings, as with standard game performance tests. Thanks to this, we can measure the performance decrease if you record your gameplay with the x264 software encoder while playing. The output is 2560 × 1440 px at 60 fps.






It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Adobe Photoshop (PugetBench)

Test environment: set of PugetBench tests. App version of Adobe Photoshop is 22.4.2.


















Adobe Lightroom Classic

Test environment: With the settings above, we export 42 uncompressed .CR2 (RAW Canon) photos with a size of 20 Mpx. Then we create 1:1 previews from them, which also represent one of the most processor intensive tasks in Lightroom. The version of Adobe Lightroom Classic is 10.3.



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Affinity Photo (benchmark)

Test environment: built-in benchmark.





Topaz Labs AI apps

Topaz DeNoise AI, Gigapixel AI and Sharpen AI. These single-purpose applications are used for restoration of low-quality photos. Whether it is high noise (caused by higher ISO), raster level (typically after cropping) or when something needs extra focus. The AI performance is always used.

Pracovné nastavenia aplikácií Topaz Labs. Postupne zľava DeNoise AI, Gigapixel AI a Sharpen AI. Každej aplikácii prináleží jedno z troch okien

Test environment: As part of batch editing, 42 photos with a lower resolution of 1920 × 1280 px are processed, with the settings from the images above. DeNoise AI is in version 3.1.2, Gigapixel in 5.5.2 and Sharpen AI in 3.1.2.



The processor is used for acceleration (and high RAM allocation), but you can also switch to the GPU

XnViewMP

Test environment: XnViewMP is finally a photo-editor for which you don’t have to pay. At the same time, it uses hardware very efficiently. In order to achieve more reasonable comparison times, we had to create an archive of up to 1024 photos, where we reduce the original resolution of 5472 × 3648 px to 1980 × 1280 px and filters with automatic contrast enhancement and noise reduction are also being applied during this process. We use 64-bit portable version 0.98.4.

Zoner Photo Studio X

Test environment: In Zoner Photo Studio X we convert 42 .CR2 (RAW Canon) photos to JPEG while keeping the original resolution (5472 × 3648 px) at the lowest possible compression, with the ZPS X profile ”high quality for archival”.



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

WinRAR 6.01

7-Zip 19.00






It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

TrueCrypt 7.1a






Aida64 (AES, SHA3)




It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Disclaimer: For big.LITTLE-based processors, there is a missing result in some tests. This is because they didn’t scale properly with P cores and the achieved performance was too low. In such cases it is indeed possible to force performance on all cores, but this does not happen by default at the user level. To avoid creating the illusion in some cases that measured results such as those presented in the graphs are normally achieved, we omit these. However, these are a negligible fraction of the total set of test results.

Y-cruncher



Stockfish 13

Test environment: Host for the Stockfish 13 engine is a chess app Arena 2.0.1, build 2399.


Aida64, testy FPU




FSI (SPECworkstation 3.1)



Kirchhoff migration (SPECworkstation 3.1)

Python36 (SPECworkstation 3.1)



SRMP (SPECworkstation 3.1)

Octave (SPECworkstation 3.1)


FFTW (SPECworkstation 3.1)



Convolution (SPECworkstation 3.1)

CalculiX (SPECworkstation 3.1)



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

RodiniaLifeSci (SPECworkstation 3.1)





WPCcfd (SPECworkstation 3.1)

Poisson (SPECworkstation 3.1)

LAMMPS (SPECworkstation 3.1)





NAMD (SPECworkstation 3.1)





It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Tests of memory…




… and of cache (L1, L2, L3)












Note: The L3 memory results, at least with our component configuration, could not be measured in AIDA64, the corresponding application windows remained empty. Tested with older versions as well as with the latest one (6.60.5900).



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Processor power draw curve



It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Disclaimer: For big.LITTLE-based processors, there is a missing result in some tests. This is because they didn’t scale properly with P cores and the achieved performance was too low. In such cases it is indeed possible to force performance on all cores, but this does not happen by default at the user level. To avoid creating the illusion in some cases that measured results such as those presented in the graphs are normally achieved, we omit these. However, these are a negligible fraction of the total set of test results.

Average processor power draw









It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Performance per watt





It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Disclaimer: For big.LITTLE-based processors, there is a missing result in some tests. This is because they didn’t scale properly with P cores and the achieved performance was too low. In such cases it is indeed possible to force performance on all cores, but this does not happen by default at the user level. To avoid creating the illusion in some cases that measured results such as those presented in the graphs are normally achieved, we omit these. However, these are a negligible fraction of the total set of test results.

Achieved CPU clock speed








It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Disclaimer: For big.LITTLE-based processors, there is a missing result in some tests. This is because they didn’t scale properly with P cores and the achieved performance was too low. In such cases it is indeed possible to force performance on all cores, but this does not happen by default at the user level. To avoid creating the illusion in some cases that measured results such as those presented in the graphs are normally achieved, we omit these. However, these are a negligible fraction of the total set of test results.

CPU temperature









It’s the fastest Core i3 yet, but it’s also the hungriest. The 14100F’s (Raptor Lake Refresh) biggest competition in its own ranks is in the form of older models (13100F and 12100F). These are a bit slower, but lower-power. The “better” choice depends on what holds more weight on your scales. Maybe it will be that record-breaking speed? In this class (Core i3), power consumption is always relatively low.

Conclusion

The Core i3-14100F is definitely the fastest option among cheap quad-core processors. The word “quad-core” is important in the previous sentence, though, because you can still get the outselling Ryzen 5 3600. It is a third cheaper than the Ci3-14100F and at the same time has a little more computing performance in some situations. Namely, in tasks where the older Ryzen fully accelerates all cores and gains numerical superiority.

In games and single-threaded applications, the Core i3 Raptor Lake Refresh is already significantly faster (than the R5 3600). But then there’s the Ryzen 5 5600, which has gradually dropped in price to the level of the Ci3-14100F. Both gaming and multi-threaded performance is higher with the AMD processor (R5 5600), and that is always at a higher efficiency. Intel’s edge (Ci3-14100F) is in single-threaded environments, which are well represented by working in a web interface or simpler office deployments.The Core i3 performs better in this regard, even with better power efficiency. Here, it’s also worth noting the intergenerational comparison, in which the Core i3-14100F, thanks to higher clock speeds, is some 6% above the Core i3-12100F speed-wise at a lower power consumption. This suggests that the manufacturing process of Raptor Lake Refresh is more efficient than that of Alder Lake (the first generation of Intel big.LITTLE processors).

In a heavy all-core workload, with all cores pushed to the edge, it no longer shows, and the 14100(F) is the least efficient processor compared to its predecessors (the 13100/F and 12100/F). With the push to higher clock speeds, power consumption rises more than computing and gaming performance. And in games, the Ci3-14100F doesn’t even achieve better speed results compared to the Ci3-13100F. These are comparable. In some places the 14100F performs a hair better, but elsewhere it’s the other way around.

The clock speeds of the Ci3-14100F are admittedly higher in gaming workloads (than those of the Ci3-13100F), but in games they don’t affect the speed much. In addition, the Core i3-14100F has wilder clock speed management, which can be seen in more pronounced power consumption spikes when the load suddenly changes. Power management is more aggressive even at very low loads, resulting in significantly higher “idle” power consumption compared to the Core i3-13100F.

But back to gaming performance, which hasn’t moved much since last time (13100F) even after increasing CPU clock speeds. Based on the Ryzen 5 5600’s higher position in the gaming performance rankings, with the Core i3, only four cores seem like a bottleneck. In cheap computers with slower graphics cards it doesn’t matter, the differences are so small that they don’t show up. That is, if we’re talking about a purely gaming setup, where a minimum number of background processes are running (if there were more of them, a processor with a larger number of cores, such as even a Ryzen 5 5600, will not slow down in practice as much as a 4-core Core i3).

In terms of the price of the complete platform, the Ci3-14100F, like the Ryzen 5000 (and AMD AM5), is an attractive choice for its support of cheaper memory and the ability to use a cheaper motherboard. With power consumption up to 90W, even low-end models with H610 chipsets can be safely used.

The Core i3-14100F has worse efficiency compared to the Core i3-13100F, you won’t notice the difference in gaming performance, but in a web and in an office environment it will be the more agile processor, although don’t expect any miracles. It’s just on the level of those +200 MHz. And what about the cooler? Higher clock speeds and higher power consumption are naturally associated with higher temperature. The supplied Laminar RM1 cooler, however, can handle such a load, as we know from its tests on the Core i5-12400 with ten watts higher power consumption. It will be noisier than on the Core i3-12100F, but still quite usable. Unless you are building an extremely quiet computer, if you find its operation to be annoying, optimizing the cooler’s fan curve is better than replacing the cooler. Its curve can be more aggressive than would be sufficient on some motherboards.

So what is the Core i3-14100F processor like? That is for everyone to judge for themselves from the text above. While for someone’s needs, the AMD AM4 platform (with the R5 5600) will be a better fit for similar money, for another, the pros-to-cons ratio will be more favorable with the Intel platform. It’s individual, it depends on personal preference.

English translation and edit by Jozef Dudáš

Intel Core i3-14100F
+ Top-notch price/performance ratio
+ Attractive price
+ Very high performance for the price range, even for more demanding office work
+ High clock speeds even in the lower class
+ Very high performance per clock
+ Finally a modern 7 nm manufacturing node
+ Lower temperatures
+ Attractive processor for which AMD has no answer
+ Superb single-threaded performance
- Weaker multi-threaded performance. This is natural for this class of processors
Worse efficiency for the Core i3 class standards
- Significantly higher idle power consumption compared to Core i3-13400F
- Does not have an integrated graphics core
Approximate retail price: 109 EUR
/* Here you can add custom CSS for the current table */ /* Lean more about CSS: https://en.wikipedia.org/wiki/Cascading_Style_Sheets */ /* To prevent the use of styles to other tables use "#supsystic-table-2936" as a base selector for example: #supsystic-table-2936 { ... } #supsystic-table-2936 tbody { ... } #supsystic-table-2936 tbody tr { ... } */

We are grateful to Datacomp e-shop for cooperation in providing the tested hardware

Special thanks also to Blackmagic Design (for DaVinci Resolve Studio license), Topaz Labs (for DeNoise AI, Gigapixel AI and Sharpen AI licenses) and Zoner (for Photo Studio X license)