Noctua NF-P12 redux-1700 PWM: Not every low-end is the same

.. and sound color (frequency characteristic)

To write that we have something mapped out to the last detail is perhaps too bold, but after proper preparation, few pieces of hardware are as easy to evaluate as fans. Of course, this had to be preceded by long preparations, developing a methodology, but you already know the story. What you don’t know yet is the first fruit, or rather the results of Akasa, SilentiumPC, SilverStone, Xigmatek or more exotic Reeven fans.

33 dBA or 33 dBA

The noise level, given as a single dBA value, is good for quick reference, but it doesn’t give you an idea of exactly what the sound sounds like. That’s because it averages a mix of noise levels of all frequencies of sound. One fan may disturb you more than the other, even though they both reach exactly the same dBA, yet each is characterized by different dominant (louder) frequencies. To analyze thoroughly with an idea of the “color” of the sound, it is essential to record and assess noise levels across the entire spectrum of frequencies that we perceive.

Spectrograph with noise levels at individual sound frequencies

We already do this in graphics card tests, and we’ll do it for fans too, where it makes even more sense. Using the UMIK-1 miniDSP microphone and TrueRTA’s mode-specific, fixed dBA application, we also measure which frequencies contribute more and which contribute less to the sound. The monitored frequency range is 20-20,000 Hz, which we’ll work with at a fine resolution of 1/24 octave. In it, noise levels from 20 Hz to 20 000 Hz are captured at up to 240 frequencies.

The information captured in the spectrograph is a bit more than we will need for clear fan comparisons. While you’ll always find a complete spectrograph in the tests, we’ll only work with the dominant frequencies (and their noise intensities) in the low, mid, and high bands in the comparison tables and charts. The low frequency band is represented by 20–200 Hz, the medium by 201–2000 Hz and the high by 2001–20 000 Hz. From each of these three bands, we select the dominant frequency, i.e. the loudest one, which contributes most to the composition of the sound.

To the dominant frequency we also give the intensity of its noise. However, in this case it is in a different decibel scale than those you are used to from noise meter measurements. Instead of dBA, we have dBu. This is a finer scale, which is additionally expressed negatively. Be careful of this when studying the results – a noise intensity of -70 dBu is higher than -75 dBu. We discussed this in more detail in the article Get familiar with measuring the frequency response of sound.

Strict acoustic safeguards are required to ensure that these measurements can be carried out with satisfactory repeatability at all. We use acoustic panels to measure the same values at all frequencies across repeated measurements. These ensure that the sound is always reflected equally to the microphone regardless of the distribution of other objects we have in the testlab. The baseline noise level before each measurement is also naturally the same. The room in which we measure is soundproofed.

To accurately measure the frequency characteristics of sound, it is important to maintain acoustic conditions at all times. We use a set of acoustic panels to create these.

Like the noise meter, the microphone has a parabolic collar to increase resolution. The latter is specially in this case not only to amplify but also to filter out the noises that occur whether we want them or not behind the microphone. We are talking about the physical activity of the user (tester). Without this addition, human breathing, for example, would also be picked up by the spectrograph. However, this is successfully reflected off the microphone sensor by the back (convex) side of the collar. As a result, the spectrogram only contains information about the sound emitted by the fan itself.


  •  
  •  
  •  
Flattr this!

Now in black… Noctua’s shortest high-performance cooler

For users who don’t sympathize with Noctua’s traditional brown and beige color scheme, the NH-D12L cooler is now out in chromax.black. The cooler differs from most competing models by its lower profile (while still having plenty of fins). And the NH-D12L chromax.black is also one of the few dual-tower CPU coolers which never collide with memory modules on the motherboard when oriented vertically. Read more “Now in black… Noctua’s shortest high-performance cooler” »

  •  
  •  
  •  

Release of Noctua’s 140mm next-gen fans sticks to schedule

The title couldn’t fit a “despite complications with the frame”. Even though Noctua figured out that the fan blades could collide under adverse circumstances due to deformation of the frame in a more advanced stage of prototyping, it seems that the fix for this inconvenience didn’t take too long. We’re again at the point where it looks like Noctua’s 140mm LCP fans are right outside the doors of the retail market. Read more “Release of Noctua’s 140mm next-gen fans sticks to schedule” »

  •  
  •  
  •  

The new card you won’t hear – Asus RTX 4080 Super Noctua

Asus and Noctua managed to launch the latest joint graphics card earlier than ever this time. The Asus RTX 4080 Super Noctua Edition is being released alongside the other models. Noctua has apparently already optimized its cooler to satisfaction on the older variant, the RTX 4080, and the situation on the RTX 4080 Super hasn’t changed enough to require design intervention. Everything is ready for production. Read more “The new card you won’t hear – Asus RTX 4080 Super Noctua” »

  •  
  •  
  •  

One comment Add comment

  1. Buying the Asus ROG Strix XF120 reading your review! It’s 20-50% better in nearly every category/setup vs the Noctua! Love my high-end Noctuas but for the cheaper side to case cool my new i9 14900k OC’d well over 350W on my custom loop, I need all the fan performance I can get. ASUS ftw again! Plus I have mainly ROG in it as we speak. 🙂

Leave a Reply

Your email address will not be published. Required fields are marked *