Silent Wings Pro 4 (BL098) in-depth review: Hard BeQuiet! KO

Static pressure measurement…

To write that we have something mapped out to the last detail is perhaps too bold, but after proper preparation, few pieces of hardware are as easy to evaluate as fans. Of course, this had to be preceded by long preparations, developing a methodology, but you already know the story. What you don’t know yet is the first fruit, or rather the results of Akasa, SilentiumPC, SilverStone, Xigmatek or more exotic Reeven fans.

Static pressure measurement…

Finally, it is time to move further down the tunnel a bit. Just behind the fan is a static pressure sensing probe. Its position has been chosen with maximum measurement efficiency in mind. In other words, the sensors are placed at the points of highest pressure (although this is virtually the same everywhere in the unconstrained part of the tunnel).

The Fieldpiece ASP2, which is connected to the Fieldpiece SDMN5 manometer, is used to measure the static pressure in the tunnel. The latter also allows measurements in millimetres of water column, but we measure in millibars. This is a more finely resolved base unit for this meter. And only from there we convert the measured values into mm H2O to allow easy comparison with what the manufacturers state.

Internal part of the probe to measure the static pressure inside the tunnel…

The difference in cross-section at the intake and exhaust (where the exhaust in this case is considered to be the anemometer) is related to the fact that the pressure increases in the narrowed part and with it the airflow. In order to avoid distortion at this level and to prevent the airflow from being stated as higher than it actually is, the Bernoulli equation must be applied to the measured values to compensate for the difference between the intake and exhaust cross-section (it also takes into account the motor housings). After this, it is again possible to confront our results with the paper parameters.

… and the external part leading to the manometer

The greater the difference between the manufacturer’s claimed values and ours, the less the specifications correspond to reality. If the claimed values are significantly higher, it is certainly an intention to artificially give an advantage to the fans on the market. However, if the manufacturer quotes a lower pressure value than we do, it points to something else. Namely, a weaker tightness of the measuring environment. The less tight the tunnel is, the lower the pressure you naturally measure. This is one of the things we tuned for an extremely long time, but in the end we ironed out all the weak spots. Whether it’s the passage for the probe itself, the flanges around the anemometer, even the anemometer frame itself, which is made up of two parts, needed to be sealed in the middle. Finally, the flap at the tunnel outlet must also be perfectly tight. That’s because static pressure has to be measured in zero airflow.

The furthest part from the fan – cap for static pressure measurements

But there is one thing that often lowers the pressure of the fans a bit. And that’s protruding anti-vibration pads in the corners or otherwise protruding corners. In other words, when the fan doesn’t fit perfectly to the mounting frame at the inlet, and there are small gaps around the perimeter, that also affects what you measure. But we have not gone into this because it is already a quality feature of the fan. In the same way, it will “stand out” and perform a bit weaker than it has the potential to do with better workmanship, even after application by the end user.


  •  
  •  
  •  
Flattr this!

BeQuiet! Dark Rock Pro 5 – A suitable successor to a legend

BeQuiet!, which I don’t need to introduce here, launched its top-end Dark Rock Elite cooler early this year. Along with it, the Dark Rock Pro 5 was also released, but it has remained somewhat in the shadow of its elite sibling, which I would like to correct today. I firmly believe that the fifth gen of the Dark Rock Pro will successfully build on the previous versions, which have always been known for their uncompromising cooling performance and quiet operation. Read more “BeQuiet! Dark Rock Pro 5 – A suitable successor to a legend” »

  •  
  •  
  •  

More and faster blades, BeQuiet! Pure Wings 3 (BL113)

Go for the variant with nine longer blades or seven shorter blades? That’s the question we’ll tackle in this test of the Pure Wings 3 140mm fan. In addition to the different geometries, you can also choose between different speed ranges with differently placed maximums. The high-speed variant has the upper hand, as expected, when it comes to needing to achieve the highest possible airflow. But it also excels in other situations. Read more “More and faster blades, BeQuiet! Pure Wings 3 (BL113)” »

  •  
  •  
  •  

BeQuiet! Silent Wings 4 (BL117): A white choice for your case

The Silent Wings (Pro) 4 represent the pinnacle of computer fan range. The non-Pro variants stand out especially in system positions and are not well suited for radiators. This is by design and in line with the sort of “micro-segmentation” of BeQuiet. In a white design, like the one tested, it will be quite difficult to find other 140 mm fans that are quieter at comparable airflow. Read more “BeQuiet! Silent Wings 4 (BL117): A white choice for your case” »

  •  
  •  
  •  

Comments (2) Add comment

  1. Hi. Do you have any idea of why this fan is capped at 2800rpm at 100%PWM speed? I can see in the test results that you are getting 2800rpm max as I do, but do you know why? All three of my fans are capped at 2800rpm.

    1. Obviously this is caused by the limitations of the fan electronics. At 12,00 V (DC/PWM) the approx. 2800 rpm is simply a ceiling. Most of the BeQuiet! fans we have tested do not reach the max. specified speed. They always just fit within the +/- 10 % tolerance. Anyway, we will address your question to BeQuiet! and if we get an answer, we will write it here in the discussion, but the fact is that most fans are a bit faster compared to the parameters and BeQuiet! has it the other way around.

Leave a Reply

Your email address will not be published. Required fields are marked *