Silent Wings Pro 4 (BL098) in-depth review: Hard BeQuiet! KO

… and airflow

To write that we have something mapped out to the last detail is perhaps too bold, but after proper preparation, few pieces of hardware are as easy to evaluate as fans. Of course, this had to be preceded by long preparations, developing a methodology, but you already know the story. What you don’t know yet is the first fruit, or rather the results of Akasa, SilentiumPC, SilverStone, Xigmatek or more exotic Reeven fans.

… and airflow

With airflow measurements, we can well explain why the test tunnel is shaped the way it is. It doesn’t consist of two parts just so that the “exhaust” can be conveniently clogged for pressure measurements. The anemometer (i.e. the wind speed measuring instrument) is held together by two parts, two formations, through the flanges.
The front part, at the beginning of which the fan is mounted, becomes steadily narrower and from about two thirds of the way through the cross-section is smaller than that of a 120 mm fan. The reason for this is that the cross-section of the anemometer is always smaller than that of the fans tested. The taper towards the anemometer fan is as smooth as could be chosen and the tunnel walls are smooth. This has minimized the occurrence of unnatural turbulence.
The difference between the cross section at the intake (fan under test) and at the constriction point (anemometer) also means a difference in dynamic pressure, the principles of the Venturi effect apply here. In order to avoid distortion at this level and to ensure that the fan airflow is not different from what it actually is, the Bernoulli equation must be applied to the measured values (for maximum accuracy, the calculation also takes into account the internal cross-sectional area of the anemometer, i.e. its inactive part ). After all this, it is again possible to confront our results with the paper parameters.

We use an Extech AN300 anemometer with a large 100 mm fan for the measurements. Its big advantage over other anemometers is that it is made for bidirectional sensing. This allows tests at different fan orientations. However, the “pull” position is more suitable or accurate for measurements, even though it may not seem so at first glance, but we’ll explain.

Here, we get to the second part of the tunnel, the part behind the anemometer. It is part of the whole device, mainly to allow a laminar flow of air to arrive at the rotor of the anemometer. Otherwise, uncontrolled side whirls would be reflected in the results, which are inconsistent with accurate measurements. Therefore, we will test the flow in the pull position. If anyone would like us to elaborate more on this topic, we can elaborate further at any time in the discussion below the article. Ask away. 🙂

The rear of the tunnel ensures, among other things, that the air supply to the anemometer fan is laminar

In connection with the anemometer, we will return a little more to the noise measurements and to the setting of modes according to fixed noise levels. It may have occurred to you as you were reading that the anemometer fan is also a source of sound that needs to be filtered out when testing fans. For this reason, we insert a belay pad between the frame and the anemometer fan before each measurement and mode setting according to the fixed noise level.


  •  
  •  
  •  
Flattr this!

BeQuiet! Riddle (4/2025). Can you guess what’s in the photo?

In cooperation with BeQuiet!, we have prepared a cyclical activity for this year, which may be of interest to HWCooling readers. We’ll post a detail of some piece of hardware and you can guess what it is. You can compete (and eventually win something) on a regular basis, with a new challenge every month. But for now, you need to get “to the next round” through the next one, in April. Read more “BeQuiet! Riddle (4/2025). Can you guess what’s in the photo?” »

  •  
  •  
  •  

BeQuiet! Silent Loop 3 (BW025): Founded on elite fans

The latest of BeQuiet!’s liquid coolers – the Silent Loop 3 – delivers exceptionally high cooling performance, thanks in part to its premium 120mm Silent Wings 4 (Pro) fans. The Silent Loop 3 with a 360mm radiator meets the criteria and demands of even the most demanding users while maintaining wide compatibility with cases. However, achieving ultra-quiet operation will require slowing down the pump. Read more “BeQuiet! Silent Loop 3 (BW025): Founded on elite fans” »

  •  
  •  
  •  

More than 100 models tested. Overview of (M.2) SSD coolers

It’s time for a comprehensive recap of the results from SSD cooler tests we’ve accumulated over the years. We’ve gathered quite a lot of data, with most of the coolers being models integrated into motherboards, compared to standalone designs available for purchase. The following article primarily creates a database of various SSD coolers, based on which you’ll be able to determine how each available model performs in terms of cooling efficiency. Read more “More than 100 models tested. Overview of (M.2) SSD coolers” »

  •  
  •  
  •  

Comments (2) Add comment

  1. Hi. Do you have any idea of why this fan is capped at 2800rpm at 100%PWM speed? I can see in the test results that you are getting 2800rpm max as I do, but do you know why? All three of my fans are capped at 2800rpm.

    1. Obviously this is caused by the limitations of the fan electronics. At 12,00 V (DC/PWM) the approx. 2800 rpm is simply a ceiling. Most of the BeQuiet! fans we have tested do not reach the max. specified speed. They always just fit within the +/- 10 % tolerance. Anyway, we will address your question to BeQuiet! and if we get an answer, we will write it here in the discussion, but the fact is that most fans are a bit faster compared to the parameters and BeQuiet! has it the other way around.

Leave a Reply

Your email address will not be published. Required fields are marked *