Alphacool SL-15 PWM: Low profile does not equal low airflow

Measuring the intensity (and power draw) of lighting

To write that we have something mapped out to the last detail is perhaps too bold, but after proper preparation, few pieces of hardware are as easy to evaluate as fans. Of course, this had to be preceded by long preparations, developing a methodology, but you already know the story. What you don’t know yet is the first fruit, or rather the results of Akasa, SilentiumPC, SilverStone, Xigmatek or more exotic Reeven fans.

Measuring the intensity (and power draw) of lighting

Modern fans often include lighting. This is no longer a “cooling” parameter, but for some users the presence of (A)RGB LEDs is important. Therefore, we also measure how intense this lighting is in our tests. These tests are the only ones that take place externally, outside the wind tunnel.
We record the luminosity of the fans in a chamber with reflective walls. This internal arrangement is important to increase the resolution for us to measure anything at all with lower luminosity fans. But also so that the readings do not blend together and it is obvious which fan is emitting more light and which one less.

Fan in the light chamber to measure the intensity of (A)RGB LEDs

The illumination intensity is measured in the horizontal position of the fan, above which is the lux meter sensor (UNI-T UT383S). This is centered on the illumination intensity sensing chamber.
The illumination is controlled via an IR controller and the hue is set to RGB level 255, 255, 255 (white). We record the brightness at maximum and minimum intensity. According to this, you can easily see if the brightness is high enough, but conversely also if the lower level is low enough for you.

In addition to the brightness intensity, we also measure the power draw that it requires. This is again through the shunt, which is between the Gophert CPS-3205 power supply and the (A)RGB LED driver. After this we get a reading of the lighting power draw. In the graphs we show it separately, but also in sum with the motor power draw as the total maximum fan power.


  •  
  •  
  •  
Flattr this!

The armored Apex Stealth fans promise the “impossible”

Alphacool has unleashed the new Apex Stealth fans on the world, which attract attention for two things in particular. Firstly, the fact that they contain robust metal elements and secondly, the specifications. These seem to be literally incredible, and while we have no doubt that the efficiency of these fans will be top notch, it’s hard to find elements for which they should be “the best”, as the specs suggest. Read more “The armored Apex Stealth fans promise the “impossible”” »

  •  
  •  
  •  

Alphacool introduces the “Core” series of high-speed fans

Six new models, with the slowest capping at 2,000 rpm and the fastest up to 4,000 rpm. It’s a mix of 120 and 140-millimeter fans, where with the larger format Alphacool reached for differently modeled rotors. This is also with a view to ensuring that a fan this fast and relatively large can operate at all at reasonably low vibration. Among Alphacool’s new products is therefore a fan with more robust blades as well. Read more “Alphacool introduces the “Core” series of high-speed fans” »

  •  
  •  
  •  

Plastic vs. metal backplate Alphacool (under LGA 1700)

For rather incomprehensible reasons, the cooling performance of the vast majority of AIO liquid coolers is degraded by the use of an unsuitable backplate. The backplate is usually undersized, made of plastic, and cannot exert optimal pressure on the processor. To give you an idea of how a “traditional” plastic backplate stacks up against a proper, steel one, we’ve prepared a comparison of the two. Read more “Plastic vs. metal backplate Alphacool (under LGA 1700)” »

  •  
  •  
  •  

Leave a Reply

Your email address will not be published. Required fields are marked *