FD Aspect 14 RGB PWM: Larger rotor, higher airflow per dBA

Results: Frequency response of sound with a hexagonal grille

Starting with the Fractal Design Aspect 14 RGB PWM test, we are starting to build a database of 140mm fan results. These may have a smaller market presence due to poorer compatibility, but compared to the 120mm models they have the makings of higher efficiency, which is why they are more popular among many users. The Aspect 14 RGB PWM fan, in addition to its aerodynamic qualities, also fights for customer favour with its lighting.

Results: Frequency response of sound with a hexagonal grille

Measurements are performed in the TrueRTA application, which records sound in a range of 240 frequencies in the recorded range of 20–20,000 Hz. For the possibility of comparison across articles, we export the dominant frequency from the low (20–200 Hz), medium (201–2,000 Hz) and high (2,001–20,000 Hz) range to standard bar graphs.

However, for an even more detailed analysis of the sound expression, it is important to perceive the overall shape of the graph and the intensity of all frequencies/tones. If you don’t understand something in the graphs or tables below, you’ll find the answers to all your questions in this article. It explains how to read the measured data below correctly.

Fan sound usually operates in the 70–7000 Hz band. You can ignore the 7000 Hz frequencies, they reflect the electromagnetic noise of the measurement chain. This (electromagnetic noise) also extends to frequencies below 70 Hz. These bands (up to 70 Hz and above 7 kHz) could be safely “shaved off”, but we don’t do that. Just in case some anomaly does appear in one of the fans, which needs to be controlled and visualised.







Why is there a missing value sometimes? There may be more reasons. Usually it is because the fan could not be adjusted to the target noise level. Some have a higher minimum speed (or the speed is low, but the motor is too noisy) or it is a slower fan that will not reach the higher decibels. But the results in the graphs are also missing if the rotor is brushing against the nylon filter mesh. In that case, we evaluate this combination as incompatible. And zero in the graphs is naturally also in situations where we measure 0.00. This is a common occurrence at extremely low speeds with obstructions or within vibration measurements.


  •  
  •  
  •  
Flattr this!

Enermax contest bonus: You’ll also get fans with the PSU

The ongoing contest for Enermax PSUs is now even more attractive. You can also enter for fans, which we will be happy to add to the package for the winner. And also for free. In their case, we don’t even require them to be paired with the main build (with the Enermax PSU). You can use them as you see fit in some other computer where they will do a better job than gathering dust on the shelves of our testlab. Read more “Enermax contest bonus: You’ll also get fans with the PSU” »

  •  
  •  
  •  

In the works: Trilogy of different Arctic P14 variant tests

Slowly but surely, the Arctic P14 fan tests are coming up. In a short time sequence we will analyze all models that differ from each other more than the color design. After testing the base model, we’ll look at how the use of ball bearings (instead of fluid bearings) affects the results, culminating with the P14 Max framed impeller. That this fan must be the most efficient? Not necessarily. Read more “In the works: Trilogy of different Arctic P14 variant tests” »

  •  
  •  
  •  

BeQuiet! put all their modern fans in white

Both 120 and 140 mm BeQuiet! fans from the Silent Wings (Pro) 4 and Pure Wings 3 series are now available in an all-white design. So both more expensive and cheaper fans, which have in common a very high airflow per unit of noise. Across the entire price spectrum, you are dealing with some of the most efficient fans you can buy for computers. And not just among the white ones. Read more “BeQuiet! put all their modern fans in white” »

  •  
  •  
  •  

One comment Add comment

Leave a Reply

Your email address will not be published. Required fields are marked *