Test setup
Intel Arrow Lake desktop CPUs have undergone a significant change on many levels. Aside from the new performance (P) and efficient (E) core architectures, they are now chiplet-based and have stopped using Hyper Threading, for example. At the same time, the power consumption is lower and the Core Ultra 7 265K CPU is often more power efficient compared to the competition. This even in games, which we haven’t seen before.
Test setup





Test configuration | |
CPU cooler | Noctua NH-U14S@12 V |
Thermal compound | Noctua NT-H2 |
Motherboard * | Acc. to processor: MSI MEG Z890 Ace, ASRock X870E Taichi, Gigabyte B650E Aorus Pro X USB4, ASRock B650E Taichi, MSI MEG X670E Ace, Asus ROG Strix Z790-E Gaming WiFi, MEG X570 Ace, MEG Z690 Unify, MAG Z690 Tomahawk WiFi DDR4, Z590 Ace, MSI MEG X570 Ace or MSI MEG Z490 Ace |
Memory (RAM) | Acc. to platform: z DDR5 G.Skill Trident Z5 Neo (2× 16 GB, 6000 MHz/CL30) a Kingston Fury Beast (2× 16 GB, 5200 MHz/CL40) a DDR4 Patriot Blackout, (4× 8 GB, 3600 MHz/CL18) |
Graphics card | MSI RTX 3080 Gaming X Trio w/o Resizable BAR |
SSD | 2× Patriot Viper VPN100 (512 GB + 2 TB) |
PSU | BeQuiet! Dark Power Pro 12 (1200 W) |
* We use the following BIOSes on motherboards. For the MSI MEG Z890 Ace we use v1.A21, for the ASrock X870E Taichi we use v3.10, for the B650E Aorus Pro X USB4 we use F4c, for the Asus ROG Strix Z790-E Gaming WiFi we use v0502, for the MSI MEG X670E Ace we use v1.10NPRP, for the MEG X570 Ace we use v1E, for the MEG Z690 Unify we use v10, for the MAG Z690 Tomahawk WiFi DDR4 we use v11, for the MEG Z590 Ace we use v1.14 and for the MEG Z490 Ace we use v17.
Note: The graphics drivers we use are Nvidia GeForce 466.77 and the Windows 10 OS build is 19045 (22H2) at the time of testing.
CPUs from other platforms are tested on the B650E Aorus Pro X USB4, Asus ROG Strix Z790-E Gaming WiFi, MSI MEG Z690 Unify, MAG Z490 Tomahawk WiFi DDR4, Z590 Ace and Z490 Ace, MEG Z690 Unify (all Intel), and MEG X570 Ace, MEG X670E Ace, ASRock X870E Taichi (AMD) motherboards.
On platforms supporting DDR5 memory, we use two different sets of modules. For more powerful processors with an “X” (AMD) or “K” (Intel) in the name, we use the faster G.Skill Trident Z5 Neo memory (2×16 GB, 6000 MHz/CL30). In the case of cheaper processors (without X or K at the end of the name), the slower Kingston Fury Beast modules (2×16 GB, 5200 MHz/CL40). But this is more or less just symbolic, the bandwidth is very high for both kits, it is not a bottleneck, and the difference in processor performance is very small, practically negligible, across the differently fast memory kits.
- Contents
- Intel Core Ultra 7 265K in detail
- Methodology: performance tests
- Methodology: how we measure power draw
- Methodology: temperature and clock speed tests
- Test setup
- 3DMark
- Assassin’s Creed: Valhalla
- Borderlands 3
- Counter-Strike: GO
- Cyberpunk 2077
- DOOM Eternal
- F1 2020
- Metro Exodus
- Microsoft Flight Simulator
- Shadow of the Tomb Raider
- Total War Saga: Troy
- Overall gaming performance
- Gaming performance per euro
- PCMark and Geekbench
- Web performance
- 3D rendering: Cinebench, Blender, ...
- Video 1/2: Adobe Premiere Pro
- Video 2/2: DaVinci Resolve Studio
- Graphics effects: Adobe After Effects
- Video encoding
- Audio encoding
- Broadcasting (OBS and Xsplit)
- Photos 1/2: Adobe Photoshop and Lightroom
- Photos 2/2: Affinity Photo, Topaz Labs AI Apps, ZPS X, ...
- (De)compression
- (De)encryption
- Numerical computing
- Simulations
- Memory and cache tests
- Processor power draw curve
- Average processor power draw
- Performance per watt
- Achieved CPU clock speed
- CPU temperature
- Conclusion