SilentiumPC Fluctus 120 PWM: “Miracle” fan from the Fera 5

Static pressure measurement…

To write that we have something mapped out to the last detail is perhaps too bold, but after proper preparation, few pieces of hardware are as easy to evaluate as fans. Of course, this had to be preceded by long preparations, developing a methodology, but you already know the story. What you don’t know yet is the first fruit, or rather the results of Akasa, SilentiumPC, SilverStone, Xigmatek or more exotic Reeven fans.

Static pressure measurement…

Finally, it is time to move further down the tunnel a bit. Just behind the fan is a static pressure sensing probe. Its position has been chosen with maximum measurement efficiency in mind. In other words, the sensors are placed at the points of highest pressure (although this is virtually the same everywhere in the unconstrained part of the tunnel).

The Fieldpiece ASP2, which is connected to the Fieldpiece SDMN5 manometer, is used to measure the static pressure in the tunnel. The latter also allows measurements in millimetres of water column, but we measure in millibars. This is a more finely resolved base unit for this meter. And only from there we convert the measured values into mm H2O to allow easy comparison with what the manufacturers state.

Internal part of the probe to measure the static pressure inside the tunnel…

The difference in cross-section at the intake and exhaust (where the exhaust in this case is considered to be the anemometer) is related to the fact that the pressure increases in the narrowed part and with it the airflow. In order to avoid distortion at this level and to prevent the airflow from being stated as higher than it actually is, the Bernoulli equation must be applied to the measured values to compensate for the difference between the intake and exhaust cross-section (it also takes into account the motor housings). After this, it is again possible to confront our results with the paper parameters.

… and the external part leading to the manometer

The greater the difference between the manufacturer’s claimed values and ours, the less the specifications correspond to reality. If the claimed values are significantly higher, it is certainly an intention to artificially give an advantage to the fans on the market. However, if the manufacturer quotes a lower pressure value than we do, it points to something else. Namely, a weaker tightness of the measuring environment. The less tight the tunnel is, the lower the pressure you naturally measure. This is one of the things we tuned for an extremely long time, but in the end we ironed out all the weak spots. Whether it’s the passage for the probe itself, the flanges around the anemometer, even the anemometer frame itself, which is made up of two parts, needed to be sealed in the middle. Finally, the flap at the tunnel outlet must also be perfectly tight. That’s because static pressure has to be measured in zero airflow.

The furthest part from the fan – cap for static pressure measurements

But there is one thing that often lowers the pressure of the fans a bit. And that’s protruding anti-vibration pads in the corners or otherwise protruding corners. In other words, when the fan doesn’t fit perfectly to the mounting frame at the inlet, and there are small gaps around the perimeter, that also affects what you measure. But we have not gone into this because it is already a quality feature of the fan. In the same way, it will “stand out” and perform a bit weaker than it has the potential to do with better workmanship, even after application by the end user.


  •  
  •  
  •  
Flattr this!

In the works: Trilogy of different Arctic P14 variant tests

Slowly but surely, the Arctic P14 fan tests are coming up. In a short time sequence we will analyze all models that differ from each other more than the color design. After testing the base model, we’ll look at how the use of ball bearings (instead of fluid bearings) affects the results, culminating with the P14 Max framed impeller. That this fan must be the most efficient? Not necessarily. Read more “In the works: Trilogy of different Arctic P14 variant tests” »

  •  
  •  
  •  

BeQuiet! put all their modern fans in white

Both 120 and 140 mm BeQuiet! fans from the Silent Wings (Pro) 4 and Pure Wings 3 series are now available in an all-white design. So both more expensive and cheaper fans, which have in common a very high airflow per unit of noise. Across the entire price spectrum, you are dealing with some of the most efficient fans you can buy for computers. And not just among the white ones. Read more “BeQuiet! put all their modern fans in white” »

  •  
  •  
  •  

New Arctic P14 Max: Anti-vibration and high speed

Those interested in 140mm fans have reason to rejoice. After the P12 Max, Arctic is also releasing the P14 Max, which is one size larger. These stick to the already established features, such as a significant speed increase, but also probably a noise reduction even at low speeds. By all accounts, these should be universal fans that will be efficient across the entire speed spectrum, and on all types of obstacles. Read more “New Arctic P14 Max: Anti-vibration and high speed” »

  •  
  •  
  •  

Leave a Reply

Your email address will not be published. Required fields are marked *