MSI MAG Z690 Tomahawk WiFi: DDR5 support, OC and decent VRM

Methodology: How we measure power draw

At first glance, it’s the same board as the last tested Z690 Tomahawk WiFi DDR4 with one difference, that it supports the newer DDR5 memory standard. That’s how the Z690 Tomahawk WiFi is profiled, but looks are deceiving. A detailed analysis shows that there are some differences, including ones in design. Whether it’s for better or for worse is something you’ll learn exclusively from our measurements.

Methodology: How we measure power draw

Motherboard “power draw” analysis is an extremely attractive topic if approached methodically. What does it mean? Measuring the electric current and voltage directly on the wiring that powers the motherboard. Naturally, the processor, or the processor power supply, has the most significant draw, which we measure separately – just as in processor tests.

In addition to the EPS cable, there is also a 24-pin ATX cable with multiple voltages, which is good to keep track of. The key ones are +3.3 V (from which the chipset is typically powered), +5 V (memory) and +12 V, from which the PCI Express slots are powered, and the biggest draw will be in the case of our test configuration on the graphics card. All of these wires are closely monitored. But then within the ATX connector there are also a few relatively unimportant branches that are no longer even used in modern computers (that is, -12 V and -5 V) or are relatively unimportant in terms of power draw. For example +5 VSB (power supply for USB or ARGB lighting even when the computer is switched off; this can usually be switched off in the BIOS) or PG (Power Good), which is only informative and during operation it is only “an also-run”. These branches (-12 V, -5 V, +5 VSB and PG) always have only one wire and often with a smaller cross section, which is also a sign of always very low power draw.

The 24-pin wires on which we measure the power draw are always connected in parallel and are at least in pairs (+12 V) or greater in number. For example, the +3.3 V branch uses four conductors to increase the cross section and the +5 V branch has up to five. However, this branch is quite oversized from today’s point of view, as historically it was intended to power more HDDs or their logical part (+12 V is used for the mechanical part).

We use a shunt of our own making to measure the draw from the 24-pin. This is built on a very simple principle and consists of very low-value resistors. The value is set so low that the voltage drop is not higher than the ATX standard. Based on the known resistance in the circuit and the voltage drop across it, we can calculate the electric current, and once the output is substituted into the known formula to calculate the power, the mathematics is easy. Samples during the course of the tests are recorded using the Keysight U1231A multimeter array via a service application that allows the recorded data to be exported in CSV. And that’s the final destination for creating line graphs or counting averages (into bar interactive graphs). That’s how simple it is.

For completeness it is good to add that the current clamps for measuring the current draw from the EPS cables (power supply to the processor) are Prova 15. These will soon be replaced by a more practical solution for desktop use, namely a similar shunt we use for the ATX connector. The only reason it is not yet in circulation is its more complex design (as it has to account for very high currents) and the need for thorough testing, which we are yet to get to. Since we place a high emphasis on accuracy in our tests, all measuring devices are properly calibrated.


  •  
  •  
  •  
Flattr this!

The Ventus 3X (RTX 4070 TiS) case: Final vs. original VBIOS

The GeForce RTX 4070 Ti Super Ventus 3X graphics card came out with a BIOS that MSI (and even Nvidia) wasn’t happy with. After the second revision, there is the third, the last revision of the BIOS. This one increases the power limit to allow higher GPU clock speeds to be achieved. However, this comes at the cost of a bit lower power efficiency. To update or not to update? That’s for everyone to decide for themselves, if they get the chance. Read more “The Ventus 3X (RTX 4070 TiS) case: Final vs. original VBIOS” »

  •  
  •  
  •  

MSI officially about RTX 4070 Ti Super 16G Ventus 3X faults

MSI has released a statement saying that the RTX 4070 Ti Ventus 3X graphics cards did indeed come out with an untweaked BIOS that prevents this graphics card from achieving its maximum performance. However, there seems to be a fix already that could solve everything. Still… let’s revisit this topic and try to sort through the possible technical reasons that cause the significant fluctuation in the performance of the cheapest three-fan MSI RTX 4070 Ti Super. Read more “MSI officially about RTX 4070 Ti Super 16G Ventus 3X faults” »

  •  
  •  
  •  

MSI RTX 4070 Ti Super 16G Ventus 3X: Big cooler w/o a markup

The biggest hardware changes compared to non-Super cards concern the GeForce RTX 4070 Ti Super. What’s different is the GPU, the amount of GDDR6X memory or the width of the memory bus. We have the RTX 4070 Ti Super in one of the cheapest non-reference designs, the Ventus 3X, for analysis and it will be about “reputation repair” as well. MSI has tarnished it a bit in this line of graphics cards in the past, but now it’s a very attractive solution. Read more “MSI RTX 4070 Ti Super 16G Ventus 3X: Big cooler w/o a markup” »

  •  
  •  
  •  

Leave a Reply

Your email address will not be published. Required fields are marked *